
BRILLANT: an open source platform for B

Samuel Colin1, Dorian Petit2, Georges Mariano3, and Vincent Poirriez2

1 scolin@hivernal.org
2 Univ Lille Nord de France, UVHC

LAMIH, CNRS UMR 8530
F-59313 Valenciennes Cedex 9, France

dorian.petit@univ-valenciennes.fr, vincent.poirriez@univ-valenciennes.fr
3 INRETS-ESTAS

National Institute for Transport and Safety Research
20 rue Elisée Reclus - B.P. 317

F-59666 Villeneuve d’Ascq, France
georges.mariano@inrets.fr

Abstract. This article presents an open-source platform, theBRILLANT project,
with a focus on some of its most prominent components.

Keywords: B method, tool support, XML

1 Introduction

The software industry adopted B because of the availabilityof software tools supporting
all phases of the B development process (semantics verification, refinement, proving,
automatic code generation). Unlike most software tools, B support tools resulted from
prototypes developed by industrial partners rather than bythe academic community. In
fact, from 1993 to 1999, the “Atelier B” development projectwas funded by the “Con-
vention B”, which was a collaborative effort of the RATP (Parisian Autonomous Trans-
portation Company), SNCF (the French National Railway Society), INRETS (the Na-
tional Institute for Transport and Safety Research) and Matra Transport (now Siemens
Transportation Systems), among others.

We think it is important to have solutions as open as possibleso as to allow the
research community to experiment upon the B method, hence wehave proposed the
BRILLANT [1] framework, showing the feasibility of a safe software development sys-
tem that ranges from semi-formal specification (UML) to contract-equippedcode gener-
ation (i.e., equipped with assertions from the abstract model). This framework consists
in a central core that provides basic tools for abstract manipulations of the B language.
Various components can be plugged into this central core.

Figure 1 shows the BRILLANT platform’s current organization. This platform is the
result of several years (the first developments goes back to 1997) of academic research
and development by a few Masters degree and PhD students. Theoriginal impetus for
the research was the lack of open tools allowing to manipulate and experiment with the
B method. Thus, our first project was to implement a parser forthe B language. We



2 Samuel Colin, Dorian Petit, Georges Mariano, and Vincent Poirriez

immediately realized that academia, or at least a part of it,was just waiting for such an
open tool since soon after its first release, two studies [2,3] used and built upon our tool.

Later on, a proof obligations generator was developed as theB method is, at its
center, proof-related. At this point of time, we had exclusively used Objective Caml [4]
as a meta-language in our platform development. It made sense to us that a cooperative
development platform could not remain language-dependent, which led us to define and
use an XML description for B in order to facilitate connections with the tools developed
by others.

Fig. 1. The overall organization ofBRILLANT

2 Some specificities of BRILLANT

Specifying with B ultimately entails the generation of proof obligations and their demon-
stration. In this section we will focus on two parts of the BRILLANT platform that deal
with these two aspects of the B method.



BRILLANT 3

2.1 The Proof Obligations Generator (POG)

Extending the language of B or adding new concepts often endsup in the extension of
the semantics of B: in that case, new kinds of proof obligations may appear. As a result,
the validation of these works requires the availability of aPOG for experimenting.

For the development of the POG, we chose to follow the approach defined in the
B-Book [5]: reducing B substitutions to their smallest syntactic and semantic set (i.e.,
generalized substitutions or GSL). Their definition inBRILLANT corresponds to the
use of an abstract data type that is then used for generating proof obligations according
to the rules of [5, appendix E].

The correspondingBRILLANT code was written with readability in mind, making
it easy to match the code with the rule from which it is derived. Ideally, this makes
the POG ofBRILLANT a developer-friendly target for experimenting with new proof
obligations rules, assuming some familiarity with the OCaml language.

Once the proof obligations in the XML format are available, they can be exported
to other tools by using XSL stylesheets. For instance, the proof obligations can be con-
verted into LATEXfiles ; into text files, which are easily read by humans; into HTML files,
which improve the readability of the formulas; or into a format suitable for a prover, in
order to verify the proof obligations.

2.2 The prover

BiCoax is a set of COQ libraries defining the mathematical constructs presented in [5]
and containing at least all properties and theorems described therein. Historically, it is
the descendant of another tool based on a similar prover (PhoX): the theory files were
translated to COQ and reorganized so as to follow the outlineof [5].

At the time of writing, BiCoax implements all constructs andall properties of the
first two chapters of [5] and half of the third chapter, up to and including the definitions
of natural numbers on set-theoretic terms.

Our implementation let us find a few mistakes in the BBook. A good part of them
are typographical errors. Some of them came from misusing orforgetting hypotheses
when proving a property, leading to false properties, whoseincidence was fortunately
minor on the rest of the theory. These errors are documented in [6] and in an ERRATA
file distributed along with BiCoax.

In the end, although BiCoax is not complete yet as the last half of the third chapter
of the BBook is not implemented, it is already integrated in the toolchain for designing
and proving B projects. As such it illustrates the relevanceof the choices made in the
upper part of the toolchain such as the use of an XML format as an exchange format
between loosely-connected tools. Despite its incompleteness, we can consider that its
initial goal of providing a proof tool for B is reached. Thanks to the loose dependency
towards the rest of theBRILLANT platform, BiCoax can also be used on its own for
experimenting on B extensions.

3 Development and distribution of BRILLANT

The first choices of development forBRILLANT consisted in the use of the Objec-
tive Caml language in a Unix-like development environment.The reasons behind these



4 Samuel Colin, Dorian Petit, Georges Mariano, and Vincent Poirriez

choices were practical: the Master’s students were familiar with developping with OCaml
for having studied it in college and were also familiar with the development environ-
ment for the same reason. Development included the use of a versioning system, which
was made necessary because of the number of people involved.Another reason be-
hind the development environment is the fact that commercial B tools ran on the same
platforms.

These choices brought their share of advantages and inconvenients. The use of
OCaml alleviated the weight of abstract-heavy handling of the B language, making the
implementation of the various parts of the B toolchain relatively easy for the students.
The development in a Unix-like environment made porting thetool to other platforms
easier as well. This fact was also facilitated by the fact that OCaml was/is available
on the targetted platforms: Linux, Solaris, MacOSX and Windows+Cygwin for the OS,
Intel, PowerPC and Sparc for the architectures. Finally, the use of a versioning system
made the development of experimental branches and their reintegration into the main
code easier.

The inconvenients are on par with the advantages. The use of OCaml makes it more
difficult for the newcomer to compile the tools without priorknowledge of OCaml
development. We tried to simplify this part by using a standard way of compiling on
Unix-like platforms (“make; make install”). The choice of such a neutral development
environment also makes the installation tricky, unusual ornot experimented on some
platforms.

The interaction between the tools suffers from a similar impediment. Because of the
variety of existing shells in the aforementioned platforms, instead of using shell scripts
for making the tools interact with each other, we use a Makefile script. This makes the
dependency-based generation of the various files of a project easier, as producing one
file from another is simply a matter of Makefile rule activation. This unfortunately has
the unfortunate side-effect of making any error in the process difficult to understand
and debug for newcomers.

In the end, we feel that the benefits overcome the difficulties. AlthoughBRILLANT
has not been tweaked for each of the platform, it still has this potential because we tried
to make the most neutral and safe choices for development in the first place.

4 Discussion, conclusion and perspectives

The BRILLANT platform design has two principal advantages: it uses open and stan-
dardized formats, and the source codes for its tools are openly available. In addition,
it can be used to test and/or validate B-related experiments, and in fact, we were the
first users of many of the prototypes now available for the platform (e.g., bparser, bgop,
btyper, BiCoax). We have been working to finetune the platform to help it meet the
needs of other theoretical research projects, including but not limited to extending the
B language, improving the current tools, providing couplings with other provers (e.g.,
Coq, Harvey), and offering other validation formalisms (e.g., model-checking).

Several other projects, these more related to the fundamental research currently un-
der way, also offer interesting perspectives for the future, such as UML/OCL/B coupling
[7], temporal extensions for B [8], and safe software component generation [9]. Much



BRILLANT 5

work remains to be done, and the platform developers will be happy to provide their
assistance to those who would like to try to use the tools in the context of their own
research. All the necessary resources for buildingBRILLANT are available on the web
site dedicated to collaborative free software development[1].

References

1. : (BRILLANT) http://gna.org/projects/brillant.
2. Bodeveix, J.P., Filali, M.: Type synthesis in B and the translation of B to PVS. In: ZB’2002

– Formal Specification and Development in Z and B. Volume 2272of Lecture Notes in Com-
puter Science (Springer-Verlag)., Grenoble, France, LSR-IMAG (2002) 350–369

3. Laleau, R., Mammar, A.: A generic process to refine a B specification into a relational database
implementation. In: ZB’2000 – International Conference ofB and Z Users. Volume 1878 of
Lecture Notes in Computer Science (Springer-Verlag)., Helsington, York, UK YO10 5DD
(2000) 22–41

4. Leroy, X., Doligez, D., Garrigue, J.and R<E9>my, D., Vouillon, J.: The objective caml sys-
tem. Technical report, INRIA (2005) Software and documentation available on the Web
http://caml.inria.fr/.

5. Abrial, J.R.: The B Book - Assigning Programs to Meanings.Cambridge University Press
(1996)

6. Colin, S., Mariano, G.: BiCoax, a proof tool traceable to the BBook. In: From Research to
Teaching Formal Methods - The B Method (TFM B’2009). (2009)

7. Marcano, R., Levy, N.: Using B formal specifications for analysis and verification of UM-
L/OCL models. In: Workshop on consistency problems in UML-based software development.
5th International Conference on the Unified Modeling Language, Dresden, Germany (2002)

8. Colin, S., Mariano, G., Poirriez, V.: Duration calculus:A real-time semantic for B. In: First
International Colloquium on Theoretical Aspects of Computing, UNU-IIST (2004) Guiyang,
China.

9. Petit, D., Poirriez, V., Mariano, G.: The B method and the component-based approach. Journal
of Design & Process Science: Transactions of the SDPS8(1) (2004) 65–76 ISSN 1092-0617.


