
Bringing State Sharing into CSP‖B:
a B-based Approach ?

Samuel Colin1, Arnaud Lanoix2, Olga Kouchnarenko3, and Vincent Poirriez1

1 Univ Lille Nord de France, UVHC, LAMIH, CNRS UMR 8530, F-59313 Valenciennes
scolin@hivernal.org, vincent.poirriez@univ-valenciennes.fr

2 LINA – UFR de Sciences et Techniques. BP 92208, F-44322 Nantes Cedex
arnaud.lanoix@univ-nantes.fr

3 LIFC, Univ of Franche-Comté, F-25030 Besançon
okouchnarenko@lifc.univ-fcomte.fr

Abstract. This paper is dedicated to the problem of sharing B machines inside
of a CSP‖B model. The main obstacle is state sharing: B machines controlled by
the various CSP parts are supposed not to refer to, share or modify the same state
space. This need for state sharing is motivated by a case study where we want to
integrate existing B machines with a shared part into a CSP‖B model. To achieve
this, we propose an architectural, B-based solution for detecting inconsistencies
in CSP‖B architectures with state sharing at the B level as well as simplifications
for the current consistency checking conditions deducible from our proposal. We
explain what consistent models can be established with the proposed criterion.
We also hint at possible extensions towards other CSP‖B architectural patterns
with various types of sub-components sharing and see how our criterion and these
extensions would complement existing solutions.

1 Introduction

In this work we address the question of how to safely reuse already-developed B models
in which there is a common and shared part when developing a CSP‖B model. The
problem of sharing is known to be difficult in the framework of the B method whereas
it is naturally supported by the CSP formalism.

The present work is motivated by an example which arose during the process of
assembling already formally specified and proved components. In the context of the
TACOS project, we modelled a situated multi-agent system of a convoy [1] while a
complex B model of a location component was also independently designed [2]. Inte-
grating the latter into the former appears to be problematic because the resulting assem-
bly risks breaking the consistency of the whole vehicle component, as state sharing is
involved. Machine sharing in the location component is indeed valid at the B level but
is not so at the CSP‖B level.

Such an architecture goes against the well-known “one controller≡one machine”
CSP‖B constraint. We are thus interested in lifting this constraint, even only partially,

? Work supported by the ANR-06-SETI-017 project: “TACOS : Trustworthy Assembling of
Components: frOm requirements to Specification” (http://tacos.loria.fr).
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and in determining under what conditions it can be done. We shall show how using
the B modularity constraints and a simplified consistency checking of CSP‖B can be
used for addressing this problem. Moreover, a developer may naturally (or intuitively)
design a CSP‖B model with multiple controllers for a B machine and also with a sin-
gle controller for multiple B machines. We give clues for determining whether such
architectural patterns would be possible within CSP‖B.
Layout of the paper. After a short presentation of the formalisms focused on the con-
cepts relevant for this paper in Sect. 2, we present a simplified version of our problem in
Sect. 3. We then relate our problem with similar related work with respect to state shar-
ing in CSP‖B and B in Sect. 4. Our main contributions are in Sect. 5, where we propose
a methodology based on the B modularity and a simplification of some CSP‖B con-
sistency checks requirements for detecting inconsistent CSP‖B architectures. We also
conjecture at some extensions for addressing the verification of more complex cases.
Finally, some conclusions and assessments are drawn in Sect. 6.

2 Concepts and Tools for CSP‖B, with a Focus on State Sharing

The B machines specifying components are open modules which interact by the au-
thorized operation invocations. CSP describes processes, i.e. objects or entities which
exist independently, but may communicate with each other. When combining CSP and
B to develop distributed and concurrent systems, CSP is used to describe execution
orders for invoking the B machines operations and communications between the CSP
processes. For space reasons, we assume that the readers are familiar with B, CSP and
CSP||B. We only focus on the necessary concepts.

2.1 Modularity in B

The whole architecture of a B project (a set of B machines and refinements) must re-
spect certain constraints. For instance, one machine can not end up being included or
imported by two different inclusion paths, as this could break the invariant. The mod-
ularity constraints of [3] proved to be not strong enough, because intermediate SEES
links could hide the fact that a machine could be modified through refinement [4]. In [5],
modularity constraints for avoiding these problems is given:

Theorem 1. (uses;can_alter)∩ ((imports;s+)∪ (sees;s∗)) = /0

with sees the set of couples (M1,M2) where the implementation of M1 sees the machine
M2, imports a similar set where the implementation of M1 imports M2, s the set where
M1 sees directly M2, uses = sees∪ imports and can_alter = (uses∗; imports). The ;
operator corresponds to the B relation composition, ∗ to the B reflexive transitive closure
and + to the transitive closure. When taking into account all implicit hypotheses about
B modularity [5], the formula can actually be simplified into the following shape:

can_alter∩ sees = /0

We introduced this modularity constraint because of the role it plays in our contribution
in Sect. 5.
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2.2 CSP‖B Components

In this section, we sum up the works by Schneider and Treharne on CSP‖B. The reader
interested in theoretical results is referred to [6,7] and the abundant CSP‖B literature
referenced therein; for case studies, see for example [8,9].

In CSP‖B, the B part is specified as a B machine without any restriction, while the
controller is a CSP process, called a CSP controller, defined by the following (subset of
the) CSP grammar:

P ::= c ? x ! v → P | ope ! v ? x → P | b & P
| P � P | if b then P else P | S(p)

Machine channels are introduced in CSP controllers to provide the means for con-
trollers to synchronize with the B machine: for each B operation x ← ope(v), there can
be a channel ope ! v ? x in the controller corresponding to the operation call: the output
value v from the CSP description corresponds to the input parameter of the B operation,
and the input value x corresponds to the output of the operation. A controlled B ma-
chine can only communicate on the machine channels of its controller. An additional
requirement for controlled B machines is that they are not allowed to share state, i.e.
see or import the same machines.

When integrating CSP controllers with their B machines into a CSP system, care
must be taken with respect to the behaviour of the B machines. Let us assume a CSP
controller P and a B machine M associated with P, forming a compound denoted (P‖M).
The verification process to ensure the consistency of (P‖M) in CSP‖B consists in ver-
ifying the following conditions: (i) Check the consistency of M, with B4Free for in-
stance, (ii) Check the deadlock-freedom and divergence-freedom of P with FDR2 and
(iii) Check the divergence-freedom of (P‖M). With these hypotheses one can deduce the
deadlock-freedom of (P‖M) in the stable failures model. A most general result concern
the deadlock-freedom of the parallel composition of controlled machines.

Originally, the technique for ensuring the divergence-freedom of a controlled ma-
chine involved the stating of a Control Loop Invariant (CLI) and its verification. This
technique required some breaking down into as many sub-formulas as there were re-
cursive calls in the controller with the addition of variables tracking in which state
the controller was. Fortunately the technique has evolved (see [10,6] for a more in-
depth presentation) into a more general and less cumbersome one. Let S, T , S′ be states
(e.g. predicates expressed in B set theory), e an event corresponding to a B operation,
p(e)(S)(S′) the property that e is called within its precondition when the before-state
is contained in S and the after-state is contained in S′ and tr a sequence of operations
represented as a list. Then the following −−−→every uniform property is introduced:

−−−→every(p)(S)(T )(tr) =

S⊆ T if tr = nil
∃S′.p(h)(S)(S′)∧

−−−→every(p)(S′)(T )(t) if tr = cons(h, t)

Let trm and prd be the B operators for calculating the termination and the before-after
predicate of a substitution respectively, op(e) be the body of the operation triggered by
e, i(e) and o(e) the actual input and output parameters of e, respectively and s a state.
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The p property, called an event predicate, is defined as follows:

p(e)(S)(T ) = ∀s.S(s)⇒(
trm(op(e))(s WITH inp 7→ o(e))
∧ (∀s′.(s WITH inp 7→ o(e),s′ WITH out p 7→ i(e)) ∈ prd(op(e))⇒ T (s′)))

)
The WITH operator makes the special variables inp and out p of event e correspond to
the actual output and input parameters of operation op(e), respectively. Corollary 3.1
of [6] tells us in essence that −−−→every(p)(init)(true) characterizes all non-divergent traces
of a controller. Thus a controller is consistent if it satisfies the −−−→every property.

With this definition, Evans & Treharne [8] define a fixed-point rule for deduc-
ing the non-divergence of a controller from some conditions to be met by a CLI:

∃CLI.init ⊆CLI(n)

∧ ∀X . (∀i.X(i) sat −−−→every(p)(CLI(i))(true)⇒
∀i.F(X)(i) sat −−−→every(p)(CLI(i))(true))

⇒ µ(F)(n) sat −−−→every(p)(init)(true)

with F the CSP controller, n the
initial state of the controller and
X a function associating an dif-
ferent index for each recursive
branch of the controller. sat is
a satisfaction relation that is de-

fined inductively with respect to each operator of a CSP controller (see e.g. [8, Sect. 4.1]
for its definition with a prefixing rule). The fixed-point rule relates the use of a CLI for
verifying the divergence-freedom of a controller to uniform properties for CSP con-
trollers. The use of uniform properties for CSP controllers lifts the need for prepro-
cessing as done earlier with the explicit construction of a CLI and it generalizes the
parallel composition of CSP controllers. Let P and Q be controllers, S,S′,T,T ′ states, p
an event predicate and p′, p′′ versions of p augmented with additional termination and
before-after predicates about external channels of P and Q, respectively:

P sat −−−→every(p′)(S)(T )
∧ Q sat −−−→every(p′′)(S′)(T ′)

⇒ P‖Q sat −−−→every(p)(S∧S′)(T ∧T ′)

The “augmented” parts of p′ and p′′

with respect to p contains an information
about data passed by the external chan-
nels we can rely on and about data passed
to the external channels we must guaran-
tee. This way, when composing two con-

trollers through parallel composition, one can ensure that the “rely-guarantee” contracts
match each other and that the whole composition is indeed divergence-free. See [8,6]
for more details, with an implementation in PVS.

3 Motivating Example

This section presents an example which arose during the process of assembling already
formally specified and proved components. Thus, it is related to one of the stumbling
blocks in the development of mandatory certified complex systems: the re-use and as-
sembly of already proved parts of software.

In [1] a convoy, the so-called platoon, of autonomous vehicles was fully specified
and validated in the framework of the CSP‖B methodology. The behaviour of this sys-
tem is described in extenso in [11] for instance. In the context of this paper we are more
concerned with the part of the model limited to a single vehicle.
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With respect to [1], a single vehicle, one element of that system, is refined in [12] to
obtain a more detailed specification. The resulting formal specification was proved to
refine – in the traces/failures model of CSP – the previous CSP‖B specification. In [12]
the refined specification contains an abstract model of a location component that aims
at determining the geographic position of the physical vehicle.

Fig. 1. Simplified view of the CSP‖B en-
hanced vehicle

In the framework of the TACOS
project, more concrete specifications of
a location component have been inde-
pendently proposed [2]: one of the in-
troduced safety requirements is that lo-
cation system would be an assembly of
several so-called raw positioning com-
ponents based on different technologies
(GPS, Wifi, GSM, Visual sensors,. . . ).
Each raw positioning component pro-
vides a chronologically ordered set of lo-
cations. The sets of all components must
be merged. In addition, to (in)validate the
provided data, an actual speed and an ac-
celeration can be used. It allows keep-
ing only the possible, i.e. consistent, lo-
cations, and removing the inconsistent
ones.

Figure 1 presents a simplified CSP‖B
vehicle model enhanced with the Location

component4. The conventions are similar to those of Fig. 2, with the plain arrows be-
tween CSP processes or between a CSP controller and a B machine being CSP events.
In this model, Actuator_accel and Sensor_speed are separate B machines. This is the
result of differentiating acceleration values as they are passed to the engine and accel-
eration values as they have been effectively applied by the engine.

We want to emphasise the fact that in Fig. 1, some of the CSP controllers share B
machines. For example, CtrlVehicleR and CtrlRaw_location share a view on Raw_location.
Consequently, the consistency of the whole CSP‖B vehicle component risks to be bro-
ken because of state sharing. The question we are interested in is: “Is it possible to relax
CSP‖B restrictions on the architecture of the B part so that we can indeed realise the
needed integration?”

4 Recent Works Addressing Sharing in CSP‖B and/or B

The sharing of B machines in CSP‖B can happen at several levels, in several ways.
Figure 2 shows several relevant architectures involving sharing. The “classical” CSP‖B
diagram is similar to Fig. 2(i) without the shared machine. As no sharing is involved,
there is no risk for the invariant of the nonexistent shared machine to be broken, nor

4 A detailed version of this paper with an appendix depicting a bigger and more complete version
of the case study is available at http://tacos.loria.fr/drupal/?q=node/83.
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for any machine or controller to suffer from interferences from an adjacent controller-
machine pair.

C1

M1

MS

M2

C2

(i)

M1

C1

MS

M2

(ii)

C1

MS

C2

(iii)

C1

M1

MS

M2

C2

(iv)

: read-only link
: read-write link

C: CSP controller
M: B machine

Fig. 2. Several architectures depicting the sharing of B machines

Machine sharing can happen because of sharing by other B machines as in (i), (ii)
and (iv) or because of sharing by several controllers as in (iii). Our work is concerned
with architectures (i) and (ii), with some considerations about (iv): the novelty of our
approach is thus bringing B sharing at the B level. This is the reason why we focused
primarily on using notions coming from the B setting such as its modularity links. In
a nutshell, our approach is about characterizing the links between controllers and ma-
chines as seeing or importing links in the B sense. It then becomes possible to consider
the whole CSP part of the system as a single B machine and to use the B constraints
upon this “transformed” system to deduce whether the shared B machines of the sys-
tem can have their invariants broken or not. Let us now compare this approach to similar
approaches applied to CSP‖B or B alone.

On the one hand, the architecture of Fig. 2(iii) was first introduced in [6], thanks
to the use of uniform properties for deciding machine consistency. The reason was
that the use of rely-guarantee properties when analyzing the consistency of a controlled
machines allowed one controller keeping track of what the other controller could change
or not in the machine. Our approach deals mostly with the B part, hence it can be viewed
as complementary. This work and ours could thus be used to bring state sharing at every
level of the CSP‖B formalism.

On the other hand, several works on the B formalism proposed tightened modu-
larity constraints for ensuring the absence of inconsistency or extending the formalism
for allowing some useful kinds of sharing. We already mentioned the work of Potet &
Rouzaud in Sect. 2.1 that is still situated in the single-writer paradigm. Assuming the
CSP controllers can be viewed as a single B entity, the modularity constraints would
allow the architectures (i) and (ii) of Fig. 2, because of the clear separation of the see-
ing (read-only) paths and the importing (read-write) paths. These tightened modularity
constraints were integrated quickly into the B commercial tools.

A few works have attempted to deal with the multiple-writer paradigm in B. Boulmé
and Potet [13] proposed an approach inspired by a similar technique of Spec#, where a
developer can mark at what places the invariant of a shared object (hence, for B, a shared
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machine) can have its invariant broken. This allows having a broader set of architectures
for B but the drawback is a greater number of proof obligations. This approach has no
tool support we are aware of.

Büchi and Back [14] proposed changing the B modularity mechanisms to allow
for multiple writers in a rely-guarantee fashion. B machines become equipped with
contracts, each describing several roles. Each contract corresponds to a way of sharing
the machine, with all roles corresponding to a way of invoking the operations of the
shared machine. In our opinion, only a combination of CSP with Büchi’s B along with
the use of uniform properties could deal with the architecture of Fig. 2(iv), because of
multiple-writers at the B level and the danger of interferences at the CSP controllers
level.

5 Sharing State within CSP‖B

Our goal, as exhibited by Sect. 3, is to relax restrictions on the architecture of the B part
of a CSP‖B model. We shall identify or recall the role played by the current architecture
in the verification of CSP‖B systems, what would be the consequences of relaxing it
and how to avoid the problems caused by this relaxation.

5.1 Consistency Conditions for B and CSP‖B

Let us assume here that the initialization is a special kind of operation. In this setting, a
B architecture is consistent if the following conditions hold [3,5]:

1. Each machine has its invariant preserved by its operations.
2. Each refinement or implementation can replace the B machine it refines.
3. The whole model respects additional modularity constraints. Among these con-

straints, such as the absence of cycles in the dependency graph, the most important
ones in our context are:

– A machine can not be imported twice; and
– The constraint of Theo. 1 (see Sect. 2.1).

The first and the second items are semi-local: the proof obligations correspond to
a local reasoning, but the machines can use operations of included or seen machines.
It must then be verified that these operations are correctly used: this is done implic-
itly when operation invocations are expanded into their respective bodies. This ensures
that the proof obligation contains a sub-goal for checking that the invoked operation is
indeed called within its precondition.

The third point corresponds to a global criterion about the overall architecture of the
B project. No double importation and no violation of the constraint of Theo. 1 ensure
no invariant breakage and no interference by a machine with a seen machine through
another indirect path.

The same kind of conditions is imposed on CSP‖B architectures:

– Control loop invariant checking [7] or uniform property verification [6] ensure that
a B machine never diverges, i.e. its operations are never called outside their precon-
ditions, through the triggering of its operations by the CSP controller.
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– The whole CSP‖B model necessarily respects B modularity constraints, because
the parts controlled by different CSP controllers never have anything in common.

5.2 B Modular Criteria for the CSP Part of a CSP‖B Model

Allowing shared B machines at the B level obviously weakens the second point: is it
then possible to express the way the controlled B machines are used by the CSP part
in terms of B modularity links and include them in the modularity analysis? The first
point could also be impacted by this change: can a controlled machine be interfered by
the actions of another controller upon a shared machine, for instance as in Fig. 2(i)?

B Modular Characterization of CSP Control First of all, how can the CSP-controlled
operations be characterized in B terms? In [3] Abrial indicates that an operation can be
callable, callable in inquiry or not callable. In the first case, such as for an importation
link, the called operation can modify the state of the imported machine. In the second
case, it can not: it is the case for a seen machine, whose such inquiry operations allow an
external machine to observe the state of the seen machine. The third case corresponds
to more specific modularity links, such as the USES link.

In modular B terms, the control of a B machine can be viewed as a weakened
INCLUDES or IMPORTS link: the operations triggered by the CSP part of the system
can modify the variables of the controlled machines. A first guideline would thus be
that we would consider CSP‖B “links” as importation links. We nonetheless can do a
finer analysis: it may be the case that a CSP controller never modifies the state of its
controlled machine but merely passes around the result of calculations, for instance. We
could thus characterize CSP‖B links with the following definition:

Definition 1. If all the operations of a B machine triggered by its CSP controller are
inquiry operations in the B sense, then we say that the CSP controller sees its controlled
B machine. Otherwise, we will say that the CSP controller imports its controlled B
machine.

For example, if at least one operation modifies the state of the controlled B machine,
then the CSP controller imports its controlled B machine.

Detecting whether an operation is an inquiry operation is rather straightforward: it
is defined as being an operation not changing the variables of its component [15, Annex
E]. Let M be a machine, v any of its variables, op an operation of M, E an expression, S
a set, called_op an operation of a machine included in M and P a predicate. We say that
op is an inquiry operation if its body contains no substitution of the following shape:
v := E, v ← called_op, v :∈ S or v : ( P).

Finding if an operation is an inquiry operation can thus be done at the syntactic
level, by detecting whether the variables of the machines appear in the left members
of the modifying substitutions of the considered operation or not. If all the operations
triggered by a controller are inquiry operations, then the control link is a seeing link,
else it is an importing link.

We can now characterize the CSP controls of the B part in terms of the modularity
of B. The remaining question is: Can we express the CSP part of a CSP‖B system as
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a B entity? It turns out that expressing a CSP system as a B machine, without loss of
semantics, is possible.

Butler [16] proposed a way of translating CSP systems to action systems, which
was later adapted to the B method [17]. In essence, the translation matches CSP events
with B operations and the result is very close in aspect to what Event-B would look like
if expressed with “classical” B. This approach is furthermore supported by the csp2b
tool, written in MoscowML. The translation keeps the semantics of the CSP operators
(sequence, parallel, interleaving) with the additional following constraints: interleaving
can only happen at the outermost level and another constraint relevant to the use of so-
called “conjoined” B machines, which is a peculiarity of csp2b that we do not use. Thus
in the end, we now know that viewing as a B entity the CSP part of a CSP‖B system is
possible.

From CSP to B Modularity We thus know that we are able to translate a CSP system
into B. We might stop here and use this translation, with adding what is needed for
translating the CSP‖B links. We can also notice that the verifications for sharing a B
machine are lifted to the architecture of the project. This verification is done through
two steps:

– Verifying that the way the variables and operations are used matches the kind of
modularity link that is used, for each machine. For instance, verifying that the op-
erations of a seen machine are inquiry operations.

– Verifying that the architecture respects the modularity constraints imposed by the
B method, such as the constraint of at the beginning of Sect. 5.2.

Because we characterized the CSP↔B links by means of the IMPORTS or SEES
links depending on what operations the controllers use, we obtain the first step by virtue
of construction. We are left with the second step: the content of the B machine does not
matter for this step. This means that the content of the CSP system translated into B
does not matter either.

Property 1. Let us suppose the CSP part is viewed as a single B machine, and that the
links between CSP controllers and B machines are characterized either as IMPORTS
links or as SEES links. If the resulting system respects the modularity constraints of B,
then no shared machine in the B part of the system can have its invariant broken.

This property is a direct consequence of lifting all the CSP parts of the system
into a B setting: any B architecture that respects the modularity constraints ensures this
property.

The process for checking that the B part of a CSP‖B system with sharing of B
machines is consistent becomes as follows:

1. Characterize the links of each controller to its controlled machine in a B fashion
(IMPORTS or SEES).

2. Represent the whole CSP system (with the CSP controllers) as a single B machine
which imports or sees the various controlled machines, depending on how the links
have been characterized.
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3. Check the resulting pure B architecture with usual B tools.

If the tool checking is successful, then the way the B machine is shared in the whole
CSP‖B system is consistent. If it fails, then the shared machine(s) face(s) a potential
invariant breakage. We shall illustrate this step on an example in Sect. 5.4.

We so far have answered the question about sharing in the sole B context. We shall
now provide answers for the problem of divergence-freedom of controllers.

5.3 Ensuring Divergence-freedom in the Presence of Shared B Machines

Let us consider the architecture of Fig. 2(i): the MS machine is imported by M2 and seen
by M1, which are themselves imported by their respective controllers. This architecture
is sound with respect to the architectural constraints of Sect. 5.2, hence MS will not have
its invariant broken.

Let us now imagine that an operation op1 of M1 references some variable of MS in
its precondition, e.g. in the shape of xS > 0. The invariant of M1 relies thus indirectly
upon the strict positivity of xS. Let us suppose that checking the consistency of C1‖M1
does not show any problem. Then, what happens if M2, because it includes or imports
MS, triggers an operation that makes xs = 0? Then the precondition of op1 becomes
invalid, even though consistency checking did not exhibit the problem. The problem
depicted here is typically a problem of non-interference and the consistency checking
approach as presented in Sect. 2 is not sufficient.

Fortunately Evans & Treharne [6] encountered a similar problem for related but
different reasons. Their first reasoning about composing parallel components involved
the reducing of the compounds to a single CSP controller↔B machine compound: the
states spaces of the B machine (like Fig. 2(i) without MS) could be merged together
and the controllers assimilated to a single controller with parallel composition. As a
side note, this is where parallel composition re-appears at the level of controllers. They
reasoned that by doing non-interference checking for separate events and after-states
intersection for synchronized events, one can deduce divergence-freedom in the pres-
ence of parallel composition of controllers. The rules, translated from the PVS version
of [6], are as follows. Let P and Q be CSP controllers and Σ(X) the events alphabet of
process X :

Definition 2. i f ∀e ∈ Σ(P)\Σ(Q)
⇒ ∀ f ∈ Sigma(Q)
⇒ ∀S,S1,S2,(p(S,S1)(e)∧ p(S,S2)( f )⇒ p(S1,S2)( f )

then P does not interfere with the traces of Q, denoted as non_inter f erence(p,P,Q).

Property 2. if non_inter f erence(p,P,Q)
∧ non_inter f erence(p,Q,P)
∧ P sat −−−→every(p)(S)(T )
∧ Q sat −−−→every(p)(S)(T )

then P‖Q sat −−−→every(p)(S)(T )

There is an additional rule for the intersection of after-states of synchronized events
that we do not show here, because we only deal with machine channels, hence events
performed independently by each controller.



Bringing State Sharing into CSP‖B: a B-based Approach 11

It turns out that this property can be simplified in our architectural case: the non-
interference property is used in a case similar with Fig. 2(iii) because the controllers
both “import” the shared machine, hence can interfere with one another. In our archi-
tectural case, we know that the shared machine is effectively imported only by one
controller, because of the B rule stating that a machine can only be imported once.
Hence we know that this shared machine will be unaffected by all other controllers:
they will only ultimately be allowed to refer to the shared machine through SEES links,
hence they can never modify the shared machine. We thus integrate this specificity in
Prop. (2), leading to:

Property 3. if P is a controller that ends up importing a shared machine, as in the ar-
chitecture of Fig. 2(i), and non_inter f erence(p,P,Q)

∧ P sat −−−→every(p)(S)(T )
∧ Q sat −−−→every(p)(S)(T )

then P‖Q sat −−−→every(p)(S)(T )

As the non-interference property is trivially verified for Q upon P thanks to the
knowledge about the architecture of the system, we simply removed it. The other non-
interference properties must be kept, because as P imports the shared machine, it can
still have an effect on the other controllers that see the shared machine.

We now are able to answer to the questions of this section. If a CSP‖B system with
machine sharing in the B part meets the following requirements:

– The CSP system viewed as a B entity together with the B part respects Prop. 1
– The controllers, at least those that involve shared machines, respect Prop. 3

then this CSP‖B system is consistent for the parts involved in the sharing of B machines.
The rest of the system can be verified e.g. with the techniques of [6]. The next section
illustrates these results on our running example.

5.4 Translating the Simplified Vehicle System into a B Architecture

Let us consider again Fig. 1. Let us denote M the B entity corresponding to the CSP pro-
cesses (or controllers): CtrlVehicleR, CtrlActuator_Accel, CtrlSensor_Speed, CtrlRaw
_location and CtrlSensor_xpos. Although there is no direct link between CtrlVehicleR
and CtrlRaw_location, they are still executed in parallel and could cause invariant break-
age in a commonly shared B machine.

Now let us write the sees and imports sets for calculating whether the architecture
respects the condition stated above. We kept the names of the differentiated CSP con-
trollers/processes instead of using M so that the reader can more easily follow the steps
with respect to Fig. 1. The controller↔machine links are importation links because the
machines are modified, as they are used for backing up the passed value in a log. With
that in mind, the sees relationship and the imports relationship are as follows. Note that
we omitted the reflexive part of the set, such as Sensor_xpos 7→ Sensor_xpos, etc:
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sees = ((sees∪ imports)+)∗ = Sensor_xpos 7→ RealVehicle
Sensor_speed 7→ RealVehicle

Location 7→ Raw_location


imports =

Actuator_accel 7→ RealVehicle
CtrlActuator_accel 7→ Actuator_accel
CtrlSensor_speed 7→ Sensor_speed
CtrlSensor_xpos 7→ Sensor_xpos
CtrlRaw_location 7→ Raw_location

CtrlVehicleR 7→ Location





Sensor_xpos 7→ RealVehicle
Sensor_speed 7→ RealVehicle

Location 7→ Raw_location
Actuator_accel 7→ RealVehicle

CtrlActuator_accel 7→ Actuator_accel
CtrlSensor_speed 7→ Sensor_speed
CtrlSensor_xpos 7→ Sensor_xpos
CtrlRaw_location 7→ Raw_location

CtrlVehicleR 7→ Location

CtrlSensor_xpos 7→ RealVehicle
CtrlSensor_speed 7→ RealVehicle

CtrlVehicleR 7→ Raw_location
CtrlActuator_accel 7→ RealVehicle

Sensor_xpos 7→ Sensor_xpos
. . . . . . . . .


We finally calculate the possibly, and indirectly, modified machines:

((sees∪ imports)+)∗; imports =



Actuator_accel 7→ RealVehicle
CtrlActuator_accel 7→ Actuator_accel
CtrlSensor_speed 7→ Sensor_speed
CtrlSensor_xpos 7→ Sensor_xpos
CtrlRaw_location 7→ Raw_location

CtrlVehicleR 7→ Location

CtrlActuator_accel 7→ RealVehicle


Now after having rewritten the CSP controllers or processes into M we obtain:

sees = ((sees∪ imports)+)∗; imports =

 Sensor_xpos 7→ RealVehicle
Sensor_speed 7→ RealVehicle

Location 7→ Raw_location




Actuator_accel 7→ RealVehicle
M 7→ Actuator_accel
M 7→ Sensor_speed
M 7→ Sensor_xpos
M 7→ Raw_location
M 7→ Location



Note that M will never be
a target, because the whole
CSP part will always be a
source of inclusion/sight to-
wards B machines. The in-
tersection of the relations in
the tables above is obviously
empty, hence the architectural

criterion is respected.
The divergence-freedom of the controlled machines is also respected. Although the

code of the machines is not shown here, it is very simple as we do not make strong
assumptions about the passed values at the moment. The various preconditions of the
machines are thus merely for typing the variables: as it is the “maximal” property pos-
sible for a variable, the absence of interference is trivially verified.

5.5 Discussion: Other Architectural Patterns

The solution for introducing shared B machines in a CSP‖B system also gives clues
about other kinds of architectural evolutions for a CSP‖B system. The “one machine-
several controllers” as in Fig. 2(iii) is already handled by the consistency definition of
Evans & Treharne [6].

The “one controller-several machines” case as of Fig.2(ii) is also conjectured to be
solved by our approach. Assuming that the controller does not contain any parallel com-
position, as is the case usually for CSP controllers, then there is no interference problem.
Hence the problem here is strictly reduced to the verification of modular constraints. In
case both controlled machines are imported by the CSP controller, our approach does
not allow to decide the (in)consistency of the shared machine.
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We are left with the case of Fig.2(iii) when modifications happen for all links. In
that case, the base assumptions of B modularity are obviously not met, hence apart
from the full use of consistency checking techniques from [6], one would have to use
an extension of B allowing such modularity links. From Sect. 4 we can surmise that
the “invariant ownership” approach of [13] or the “rely-guarantee” approach of [14]
would fit. Given that Boulmé concludes that [13, conclusion, third paragraph] the rely-
guarantee approach is more modular, we suggest that using Büchi’s extension of B as a
replacement for classical B would bring what is needed for such an architectural case.
As this extension impacts mostly the modularity of B and not its core (set theory and
substitutions), we think the changes needed at the level of CSP‖B would be minor.

6 Conclusion

When integrating independent work on a B model of a location component [2] in our
whole CSP‖B system [1], we were faced with the violation of CSP‖B architectural
constraints by the newly introduced location component. The CSP‖B formalism indeed
requires that the controlled B components do not share states.

The solution we propose for allowing some architectures with state sharing involves
the verification that the shared machine has not its invariant broken, and that the intro-
duction of sharing does not disturb the components. As the first verification is rooted
into B semantics, we proposed an idea based on the fact that a CSP system can be
viewed as a B machine. We thus were left with characterizing the links between CSP
controllers and B machines as B modularity links. The verification could thus be re-
duced to the checking that B modularity constraints are satisfied.

The second verification involved problems of interference between controllers. We
re-used the solutions proposed by Evans & Treharne [6] for verifying the non-interference
of controllers. We adapted them with the additional knowledge given by modularity
links at the B level to deduce that some non-interference properties were naturally
drawn from the modularity links.

Our solution allows the relaxation of some constraints upon B machines in a CSP‖B
system. From there, we conjecture that most architectural patterns can be solved with a
combination of our solution and the consistency checking rules of [6]. We think at this
point that, for addressing the multiple-writers problem at both the level of CSP‖B and
B, one would need using another extension of B allowing such a paradigm, such as a
version of B extended with rely-guarantee contracts [14].

Longer-term perspectives include the study of CSP‖B component refinements adapted
to our problem. Preliminary studies of recent advances in this domain [18] imply that
the kind of refinement we seek would be different because of a more complex evolu-
tion of the B part through the design. Other interesting perspectives would involve the
adaptation of the consistency rules of [6] from PVS to a library for the B method in Coq
[19], as the affinity of Coq with fixed-point reasoning could help in the verification of
uniform properties.
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