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Abstract. We introduce BiCoax, a shallow embedding of B set-theoretic first-
order logic into the Coq proof assistant. This tool aims at validating the mathe-
matical foundations of B described in the BBook and providing the B community
a proof tool matching those foundations. While this is still a work in progress,
BiCoax has become usable for mundane proof work in B projects.

1 Introduction

BICOAX3 is a Coq[25] library for proving formulas defined in the first-order set-theore-
tic logic of the B formal method. This work is initially based upon similar efforts done
by Rocheteau [23] with another proof assistant named PhoX [22] and it is available as
part of the BRILLANT platform (https://gna.org/projects/brillant).

The original aim of this work was to provide a B proof tool based on a generic proof
assistant, for proving B Proof Obligations. This aim was completed with a secondary
objective of validating the mathematical foundations of B described in the BBook[1].
This book indeed introduces very precisely these mathematical foundations and claims
many of their properties, sometimes providing a proof along. Unfortunately, the number
of these proofs is reduced in comparison of the number of claimed properties.

Ideally, the design of any formal method shall be supported with tools when pos-
sible, e.g. for avoiding inconsistencies introduced by mere human errors. BiCoax sub-
scribes to this approach: the use of a tool helped with the discovery a few simple typo-
graphic errors as well as minor semantic mistakes in the BBook.

? The present work has been partially supported by the ANR-SETIN project: TACOS :
Trustworthy Assembling of Components: frOm requirements to Specification, the European
Community, the Délégation Régionale à la Recherche et à la Technologie, the Ministère de
l’Education Nationale, de la Recherche et de la Technologie, the Région Nord-Pas de Calais,
the Centre National de la Recherche Scientifique. The authors gratefully acknowledge the
support of these institutions.

3 BICOAX can be downloaded through Subversion (https://gna.org/svn/?group=
brillant) or through a tarball placed in http://download.gna.org/brillant/
snapshots/
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As for providing a proof tool for the B method, BiCoax implements all operators and
most theorems up to the middle of the third chapter of [1], namely the introduction of
integers. This means that the missing constructs are sequences and trees, which are not
as frequently used in B projects as function constructs, for instance. As a consequence,
we think that BiCoax is already mature enough for being used as a proof tool in the
development of mundane B projects.

After justifying the need for our implementation with respect to similar work in
Sec. 2, we give a short introduction to the involved formalisms in Sec. 3. We describe
our implementation choices in Sec. 4 and their consequences on the theoretical side in
Sec. 5. We present a feedback of some manual and automated experiments with our tool
in Sec. 6. We conclude with the various perspectives in Sec. 7.

2 Related work

2.1 Objectives

As stated in the introduction, the goal of BiCoax is to provide a proof tool for B based
on the first reference on B theory [1]. It is possible to try re-implementing a proof tool
in a given programming language, but using a generic proof assistant provides us with
the ability to double-check the theorems already established on paper. This gives us our
second goal of tracking the inconsistencies of the BBook. We left aside other objectives
such as the automation of proofs, although we hope that our choice of a proof tool will
help make our task easier when these objectives are given a higher priority.

Moreover, two additional parameters must be chosen when implementing through
another formalism: the kind of embedding and what levels of B will be implemented.
The embedding can be either shallow or deep. For B, an embedding usually will be
shallow if it reuses the logic of the target formalism directly (such as the first-order logic
of Coq) and it will be deep if the syntactic structure of B is modeled again in the target
formalism. The implementable levels of B can be divided into the following categories:
(i) mathematical foundations [1, chapters 1-3], (ii) generalized substitutions [1, chapters
4-5,9-10], (iii) theory of abstract machines [1, chapters 6-8] and (iv) refinement [1,
chapters 11-13].

For a proof tool, the sole mathematical foundations are sufficient and the embedding
is often, but not exclusively, a shallow one. With all the previous items we can now
characterize BiCoax: it is a shallow embedding of the B set-theoretic logic in Coq. As
such it reuses directly the first-order logic connectors of Coq with the axiom of excluded
middle and the axiom of choice. At the time of writing, BiCoax covers the first three
chapters of the BBook but the integers, the sequences and the trees, i.e. the last half of
the third chapter is yet to be implemented. Let us now describe more precisely similar
work.

2.2 Similar work

[23] presented a comprehensive view of other efforts directed at the validation of B or
the creation of a proof tool for B. We shall sum up here the description of these efforts
and amend this description with more recent work.



Bow
en

[14]

Chart
ier

[16]

Bodeve
ix

[12]

Bodeve
ix

[13]

Berk
an

i [9]

Roch
ete

au
[23]

Jae
ger

[19]

BiC
oax

formalism HOL Isabelle/HOL PVS PVS Coq PhoX Coq Coq
embedding
Deep ? ? ? ?
Shallow ? ? ? ?

B level
Foundations ? ? ? ? ? ? ? ?
Language ? ?
Machines ? ?

Objectives
Validation ? ? ? ? ?
Tool ? ? ? ? ?

Table 1. B implementations at a glance

Table 1 sums up the existing implementations of B, what embedding they use, what
levels of B they implement and whether the implementation is proposed to validate the
semantics of B or to provide a proof tool. Note that we did not include “refinement”
because it is also taken care of at the “Machines” level.

We also included in Table 1 an implementation of Z, because the mathematical
foundations of B and Z are very similar. It turns out that the various implementations
are done with usually mature proof assistants: HOL, Isabelle/HOL, PVS and Coq. The
only exception is PhoX, which did not meet the same adoption despite an efficient
equational reasoning engine.

Let us firstly give more details at implementations that are more than five years old.
Bowen & Gordon [14] propose a shallow embedding of Z in HOL with HOL viewed
as a proof tool. They justify the choice of a shallow embedding for avoiding too com-
plex notations. The goal of Chartier [16] is the derivation of a predicate for defining
formally PO generation and its validation. His implementation is a deep embedding
realized with Isabelle/HOL and it supports not only the foundations of B but also the
generalized substitutions and the representation of abstract machines. Bodeveix & al.
[12] have a similar but less ambitious goal, as their validation involves only the gen-
eralized substitutions. This time the deep embedding is done with PVS and automated
with the PBS tool by Muñoz. The work of Bodeveix & Filali [13] concerns the type-
checking of B, this time with a shallow embedding in PVS. This work gave way to a
typechecker which was later integrated into the BRILLANT platform. Berkani & al. [9]
proposed a deep embedding of B into Coq for validating the logic rules of the prover of
the AtelierB commercial tool. To the best of our knowledge, all the works we just cited
have no usable tool available, either because it does not exist anymore or because the
proof assistants they are based upon have evolved too much.



More recent implementations consist of B/Phox [23], BiCoq [19] and BiCoax. Ro-
cheteau [23] introduces a shallow embedding of the foundations of B in PhoX: the set
constructs are translated into PhoX[22], this translation being proved correct. This work
is now abandoned because its direct successor is actually BiCoax: the very first working
source code of BiCoax is a translation of the PhoX constructs into Coq.

We are left with comparing BiCoax with BiCoq [19]: the objective of Jaeger &
Dubois can be seen as a gathering of all the objectives of the previously cited works.
Their goal is to validate the theory of B and propose a proof tool for B. They realize
a deep embedding of B into Coq. Choosing a deep embedding avoids the interference
of the classical logic of B with the more intuitionistic logic of Coq and allows the
proposition of decision procedures. Their implementation also has the peculiarity of
using De Bruijn indices for quantified variables. [19] does not make it clear what parts
of [1] are covered, although we can infer that they include the first two chapters.

With respect to all the works presented here, we can see that the most relevant work
to compare our efforts with is BiCoq [19]. The most recurring question in comments
about earlier presentations of BiCoax was about the reuse of BiCoq: why not develop
on the base of BiCoq ? The first answer is purely practical: several attempts to contact
the authors of BiCoq before and during the development of BiCoax were unsuccessful,
thus we simply did not have BiCoq at disposal. We then were deprived of the most
straightforward option of reusing BiCoq.

The second answer is about the durability and the availability of BiCoax. We wanted
to avoid the fall into oblivion from which all the previous work, B/PhoX [23] excepted,
seem to have suffered. We also wanted to include BiCoax in the tool suite of the BRIL-
LANT platform, which requires the release of BiCoax under open-source license terms.
As a result, BiCoax is now part of the BRILLANT platform and is available for anyone
to try. It is also durable as it is proposed in the same conditions as B/PhoX, which was
the only work we could reuse in the end. Moreover, using Coq as an underlying proof
tool makes the durability of BiCoax linked to the effective durability of Coq.

In light of the previous comparisons, we thus make the strong but independently
verifiable claim that BiCoax is the most complete academic tool for proving B or event-
B projects, complete to be read in the sense of “matching the BBook”.

We shall conclude this section by mentioning the provers of B commercial tools.
Their main objective is very pragmatic: having an efficient automated proof tool for
a possibly big number of proof obligations. They function mostly by saturation of
premises until a contradiction in the hypotheses is found. They also include mecha-
nisms for the users to specify their own decision procedures. For instance, the prover
of the B-toolkit includes a tactic language comparable to the tactic language of Coq,
although much simpler. Those commercial provers are also based upon an adapted B
set-theoretic logic, hence comparing them with academic tools is somewhat less rele-
vant. What makes these tools interesting is their efficiency: they are thus a good choice
for evaluating the performance of B academic proof tools.



3 A short presentation of the involved formalisms

3.1 The B and event-B formal methods

B is a formal software development method used to model and reason about systems [1].
The B method has proved its strength in industry with the development of complex
real-life applications such as the Roissy VAL [7]. The principle behind building a B
model is the expression of system properties which are always true after each evolution
step of the model. The verification of a model correctness is thus akin to verifying the
preservation of these properties, no matter which step of evolution the system takes. A
successor of B called event-B[21] takes the modelling further in allowing the reasoning
about systems in an event-based fashion. The verification step of an event-B model is
done in a similar way as B with taking into account deadlock problems due to the fact
the formalism is event-based.

In both cases, the verification entails the generation of so-called proof obligations
(POs) which are set-theoretic first-order logic formulas to be proved in the context of the
B or event-B theory. PO generation for B is supported by several tools like B4Free[6], ,
AtelierB[4] , the B-toolkit[5] or the BGOP of our BRILLANT [18] platform. For event-B,
the only tool is Rodin[24]. The proof is also supported by the tools mentioned previ-
ously except for the BGOP, whose only task is PO generation. Proof in BRILLANT shall
be supported by BiCoax.

There are a few differences in the theory of B and event-B, though. Event-B gives
different definitions for some of the basic constructs,supposedly compatible with B. As
BiCoax is primarily about validating the BBook, we shall focus in this document on B
alone, although we might occasionally mention event-B to state how our implementa-
tion fares or shall fare in an event-B context.

3.2 Coq

Coq [25] is a proof assistant based on the calculus of inductive constructions. This
implies the following important points:

– The logic is an intuitionistic one, hence properties such as excluded middle or the
axiom of choice, fundamental in the logic of B, are not available immediately. Coq
fortunately provides modules in its libraries for such axioms

– Types are first-class citizens. It is possible to build datatypes associating basic val-
ues with types or to make the existence of a datatype rely upon the validity of a
proposition, for instance.

Types are also organized along a hierarchy of sorts:

Set is the sort of program types. If this datatype is supposed to be implementable, this
sort shall be preferred. Natural numbers and integers belong to Set, for instance

Prop is the sort of propositions, hence logical formulas
Type is the sort of Set and Prop and it constitutes the rest of the type universe hierar-

chy: a datatype built upon another datatype of Typen will inhabit Typen+1, although
these indices are hidden to the user.



The following example shows how the union property of two sets is modeled in the
ENSEMBLES module of Coq’s standard library:

Inductive Union (B C:Ensemble) : Ensemble :=
| Union introl : ∀ x:U, In B x→ In (Union B C) x
| Union intror : ∀ x:U, In C x→ In (Union B C) x.

This datatype can be interpreted two ways. In the propositional perspective, Union introl
and Union intror are axioms describing the properties of the union from the notion of
set belonging. In the type theory perspective, Union introl is an element of type Union
B C and it is parametrized by a (set belonging) property.

Another important functionality of Coq in our context is the ability to write tactics
for automating repetitive proof tasks. Thanks to constructs reminiscent of a program-
ming language and to pattern-matching, it is possible to associate specific proof steps
to goals of a known shape. These proof steps can involve existing tactics and theorems.

4 Implementation choices

After a short presentation of the targetted organization of our library and of the design
choices made before implementation, we exhibit its particularities.

4.1 Organization and design choices

Ideally, it should be possible to trace BiCoax theorems and definitions back to the corre-
sponding entry of the BBook. We thus chose to split BiCoax the same way as the part of
the BBook we model. The BCHAPTER1 module introduces the theorems of first-order
classical logic (we reuse the logical connectives of Coq), the BCHAPTER2 introduces
basic and derived set constructs and BCHAPTER3 introduces high-level constructs. In
order to manage code size, we chose to have one file for each section. There are two
noticeable exceptions: the first chapter and properties listings. The first chapter holds in
one single file because no definitions are introduced and proofs are short. The properties
listings of the BBook follow the “one table = one file” policy. Finally each definition or
theorem shall refer in a comment the corresponding page, section and table row of the
BBook, when applicable. Table 2 sums up what sections of the BBook are modelled,
into how many and which files.

When implementing the various definitions of the BBook, we used the following
guideline: if a matching definition exists in the standard library of Coq, we use it. If
not, we implement it preferably as an inductive definition: this constitutes more of a
stylistic choice which is consistent with the module of the standard library we reuse
the most. In all cases, BiCoax is initially based on B/PhoX[23] which means that the
equivalence or the equality of each translated operator shall be assessed. Hence each
BiCoax module containing definitions will also contain theorems showing the equality
or the equivalence of the definition with the corresponding BBook definition.

BiCoax might also be used by non-specialists in the future: POs can be big, hence
readability of formulas is an important concern. Coq allows the definition of additional
Unicode notations and event-B introduced Unicode notations for B constructs [21].



Chapter BBook section Filled-in files files
1 All 1 BCHAPTER1

2

Basic set constructs 2 BBASIC, BINCLUSION PROPS

Derived constructs 2 BDERIVED CONSTRUCTS{, PROPS}
Relations 1 BRELATIONS

Functions 1 BFUNCTIONS

Catalogue of properties 13 . . . LAWS, EQUALITIES . . .

3

Generalized Intersection/Union 1 BGENERALIZED UNION INTER

Fixpoints 1 BFIXPOINTS

Finite sets 1 BFINITE SUBSETS

Infinite sets 1 BINFINITE SUBSETS

Natural numbers 13 BNATURALS{ BASICS,. . . }
Integers 1 BINTEGERS{ BASICS,. . . }
Finite sequences 0 BSEQUENCES

Finite trees 0 BTREES

Labelled trees 0 BLABELLED TREES

Binary trees 0 BBINARY TREES

Well-founded relations trees 0 BWELL FOUNDED

Table 2. Global organization

We thus decided to introduce a notation scope that can be activated when necessary.
This notation scope also follows the guidelines of [21] for associativity and priority
of notations. Some event-B notations are in a “private” zone of Unicode because no
corresponding symbol exists officially: in that case we decided to reuse other similar-
looking symbols. Here follows an example of Unicode notation for set belonging:

Notation "x ∈ y" := (In y x) (at level 11, no associativity): eB scope.
Many definitions are parametrized by the types of the sets they manipulate. In that

case we declared these type parameters implicit so that Coq infers them. This design
choice makes the formulas feel less crowded.

We shall now detail what parts of Coq were reused and when not, what changes we
introduced w.r.t. the definitions of the BBook.

4.2 From B to Coq

Reused constructions. BiCoax is a shallow embedding, hence we reuse some parts of
Coq for our benefit.

The most basic connectors are directly reused, i.e. logical connectors (conjunction,
disjunction, negation, etc) and pairing. On a related note, reusing the pairing of Coq
shielded us from discovering the fact that the injectivity of pairing is never showed in
B, as noticed by Jaeger in the French version of [20] at the end of Sec. 8.2.

We reused the definitions of the Coq’s standard library ENSEMBLES module for
basic set constructs: set belonging, inclusion, union, intersection, empty set, set differ-
ence. This reuse is also justified by the fact that set belonging in this module match very
closely set belonging in B. Let U be a datatype and A a value of type (EnsembleU): A
is actually a function of U to propositions (U → Prop). Set belonging is defined as :



Definition In (A:Ensemble) (x:U) : Prop := A x.
This means that for the ENSEMBLES module, belonging to A is the same as verifying
the A predicate, which matches exactly the B definition of set belonging.

We also imported the CLASSICALEPSILON module for the choice operator as well as
related constructs and tactics proposed by Castéran [15]. We could not reuse the notion
of relation of the ENSEMBLES module because it lacks the property being itself a set (of
couples), hence we modeled relational and functional constructs in the “B way” upon
the basic set constructs mentioned above.

Earlier communications about BiCoax raised the question of why we decided to
reuse the ENSEMBLES module instead of FSETS. This is because this module requires
an ordered datatype upon which sets of this datatype can be built. In B, the only basic
datatype is that of the BIG abstract set: as we have no information about the order of
its elements, it was thus not possible to use FSETS. Let us note here that it would be
possible to do so with event-B as it defines the natural numbers as a basic datatype,
which we know are an ordered type.

Our rule of thumb for definitions is to use inductive constructions when possible.
The third chapter of the BBook introduces at its beginning the notion of fixpoint and
makes almost systematic use of it for defining the rest of B constructs: this is where
our choice of Coq becomes the most fruitful as inductive (and thus fixpoint-based)
constructs are pervasive in Coq. As a consequence, all inductive constructs of B are
translated into inductive definitions. The existing inductive definitions we reused were
the notion of finite sets as the Approximant of the ENSEMBLES module, the notion of
natural number and all arithmetic operators for natural numbers of the ARITH module.

Proposed constructions When not reusing definitions of the standard library of Coq,
we had to balance ease-of-use and traceability to the BBook of the definitions we pro-
posed. While it is not the place here to present all definitions we introduced, we think
that the definition of partial function sums up what challenges choosing a definition
poses. The BBook suggests two equivalent definitions of partial function:

– {f | f ∈ A ↔ B ∧ (f−1;f) ⊆ id(B)}
– {f | f ∈ A ↔ B ∧

∀(x,y,z).(x,y,z ∈ A×B×B ∧ x 7→y ∈ f ∧ x 7→z ∈ f ⇒ y = z)}

The second definition make explicit the image unicity property for functions, which
is often used in proofs involving partial functions. This property can of course be de-
duced from the first form of the definition, but it makes it less immediately usable for
the end-user. In the second definition, the type information about x, y and z seems re-
dundant: it should be deducible from the belonging of x 7→ y and x 7→ z to f . These
remarks lead us to the final shape of the corresponding BiCoax definition:

Inductive partial function (U V: Type) (A: Ensemble U) (B: Ensemble V): Ensemble
(Ensemble (U*V)) :=

pfun intro : ∀ (f : Ensemble (U*V)),
In (relation A B) f

→ (∀ (x: U) (y: V), In f (x,y)→ (∀ (z: V), In f (x,z)→ y=z))
→ partial function U V A B f.



The use of a curryfication of pfun intro arguments instead of a conjunction also
removes one or two additional decomposition steps in proofs later on.

In the end, we believe it to be easy for the end-user to manipulate the various def-
initions. The danger is then that the definitions we propose do not match the BBook
definitions anymore. This imposes on us the verification that our definitions are equiv-
alent to the BBook definitions.

4.3 Validity of modified constructs

Let us look at the definition of shallow embedding of a B term in PhoX as defined in
[23], where † is a translation function:

( f t1 · · · tn)† ≡ f † t†
1 · · · t†

n

For the embedding to be correct, it must guarantee that it is the same to handle a trans-
lated complex term or to handle the same term for whom each subterm is translated.
When the embedding is a deep one, this verification can be assisted by the tool used for
it. Because our embedding is a shallow one, we can also do such a verification but it
is meaningful only for connectors directly reused: for instance, proving with Coq that
(P↔ Q)↔ (P↔ Q) is trivially verified.

Fortunately this meaninglessness is limited to logical connectives. For other con-
structs, the verification, even if done within Coq itself, is more meaningful. When the
definition is predicative we use the logical equivalence of Coq and for terms we used
Coq’s Leibniz equality, whether they be sets or other constructs. Here we advise the
reader to see e.g. the verification of the validity of set union in the BDERIVEDCON-
STRUCTS module.

When dealing with datatypes the verification becomes a bit more convoluted as the
operators defined upon this datatype must also be transformed. We thus introduce ho-
momorphic functions for translating one datatype into the other and we verify that one
operator in the one datatype is isomorphic with the corresponding operator in the other
datatype. For instance, in the BNATURALS* modules the homomorphisms are nat of bbN
and bbN of nat and for all arithmetic operators (except logarithm at the time of writing)
the isomorphism is verified.

All the design choices we presented here gave us a clear guideline for implementing
the first part of the BBook and we present some theoretical results and remarks in
section 5.

5 Theoretical results

So far BiCoax amounts to about 27000 lines, or 768KB. It contains 1163 theorems and
lemmas and was written with 3 estimated person-months. What has been implemented
is split between:

Chapter 1 All non-trivial theorems about first-order logic with predicates have been
proved. This part is somewhat trivial but what makes it most interesting is seeing
which theorems actually require the excluded middle for being proved



Chapter 2 All this chapter was implemented and all properties were proved
Chapter 3 All sections up to and excluding integers have been implemented. The only

theorems left unproved at the moment are the Dedekind-infinity theorem for infi-
nite sets and the properties about natural logarithm, for which we also proposed a
definition purely based on the nat datatype of Coq.

At this point, we found very few mistakes in the BBook, which makes it a solid
reference for basic mathematical concepts. The mistakes include:

– What we think are typographical errors, e.g. a u instead of a v in a hypothesis
– False properties, the ones numbered 33 and 34 in MEMBERSHIP LAWS. Given their

location, they are most likely copy/paste errors
– Property 2.5.1, where the right-to-left implication is actually false. This mistake

most probably occurred because one of the hypotheses needed for proving the defi-
nition was overlooked (which the use of a tool would not allow). As a consequence
the proof of theorem 3.5.3 is wrong, while the theorem itself is true: we did the
proof differently, because the theorem 3.5.3 is needed after

– Properties of addition: the codomain of the addition was deduced to be N from
theorem 3.5.3, while it can only be deduced to be P(BIG). Many definitions depend
on addition, hence blindly following the theorems would have induced too many
chances. As a consequence we decided to define the addition upon (N C succ),
which leads to the desired properties, instead of succ.

We put counterexamples and more detailed explanations in an ERRATA file dis-
tributed along with BiCoax. The following sections present interesting or difficult points
pertaining to our implementation.

5.1 Axioms in BiCoax and dependability

The dependability of BiCoax can be attributed to the trustworthiness of the following
items: Coq, the axioms we included and the non-inconsistency brought by the intro-
duced axioms. Coq has existed for about two decades and many academic and industrial
users trust it, hence we will not discuss it further here.

The very fundamental axioms we needed and thus included are: the excluded middle
(EM), the constructive indefinite description (epsilon) and set extensionality (Set ext).
The derived axioms we introduced so far are the infinity of the BIG set and the axioms
related to integer negation for defining the negative part of the set of integers in the
BBook. If BiCoax were to be inconsistent, it would thus come from the use of these
axioms which are necessary for our implementation.

Without entering into details, we know that the excluded middle, while making a
strong assumption about the decidability of statements, does not cause inconsistencies
by itself. Used with the axiom of choice, it implies proof-irrelevance [8], which is still
not inconsistent. As epsilon can be seen as a weaker form of the axiom of choice, it
is then very possible that proof-irrelevance is present in our implementation. We also
know that epsilon allied with the impredicativity of Coq’s Set sort leads to inconsistency
[15, introduction]. As of version 8.0, Set is predicative by default hence we also avoided
inconsistency here.



As a consequence, the other places from where inconsistencies might originate are
the derived axioms coming from B: it can thus be said that BiCoax can be considered as
dependable as B. We however do not plan to scrutinize these axioms in the near future
to look for potential inconsistencies.

5.2 Pitfalls of function application

As reckoned by Jaeger [19, section 3], implementing function application in a shallow
embedding is a tricky exercise. According to the BBook, functional application requires
the choice operator (epsilon) and a relation having the property that the image of any
of its element is unique (the functional property). As we used Castéran’s [15] unique
choice iota operator, unicity becomes an intrinsic property of the image.

Definition app (U V:Type) (A: Ensemble U) (B: Ensemble V)(f : Ensemble (U*V))
(x:U) (applicability: In (partial function A B) f ∧ In (domain f ) x) :=

iota V
(codomain unique inhabitation U V A B f x applicability)
(fun y:V⇒ f (x,y)).

This might be the definition the most foreign to its B origin, as the problem of its
soundness in Coq comes much into play: it requires an additional parameter which is a
proof that the datatype of the codomain is inhabited. Fortunately such a proof can actu-
ally be deduced from the the mandatory well-definedness side-condition of functional
application. The definition above is thus what we think is the best trade-off between Coq
soundness and friendliness to the end user, who is likely to have already seen proofs of
well-definedness in other B tools. Its use in formulas requires an additional proof of
existence of well-definedness. This explains why the EQUALITIES EVALUATION module
contains so many existential quantifications.

5.3 The types of B and Coq

As expected, BiCoax exhibits some of the peculiarities of B typing. For instance, any
set must be based on a given datatype: hence there is not one but several empty sets
[1, section 2.3.3]. Overlooking this fact when implementing a prover “from scratch”
might lead to inconsistencies. We still could make it look like there is only one empty
set without breaking typechecking thanks to Coq’s notation mechanism:

Notation " /0" := (Empty set ) (at level 10, no associativity): eB scope.
Coq is indeed able to infer type parameters when they are simple enough: this per-

mitted us to propose a unified notation for the empty set.
We also removed in some definitions the “B typing” parts, i.e. the predicates stating

to what sets the bound variables belong. Indeed, these predicates are sometimes redun-
dant (see e.g. the partial function definition of Sec. 5.2). Systematically proving the
equivalence of the new definition with the corresponding BBook definition comforted
us in our action.



5.4 Natural numbers and arithmetic operations in BiCoax

Implementing the part of the BBook introducing natural numbers faced us with a dilemma:
reusing the convenient Coq’s natural numbers or strictly following the BBook. In order
not to sacrifice usability, we decided to do both, finding easy-to-overlook peculiarities
in the process. For using both datatypes, we had to propose an isomorphism in the
form of two homomorphims: bbN of nat is a recursive function with a straightforward
definition similar to the B fixpoint construct for natural numbers. The nat of bbN ho-
momorphism is simply the cardinal of the B natural, which is a subset of BIG.

We proved that B arithmetic operations and Coq’s functions are equivalent, some-
times under conditions. Coq functions are indeed total w.r.t. their arguments (e.g. 0−
1 = 0 for natural numbers in Coq) while B operations are partial (x−y is defined under
the condition that x ≥ y). This suggests that for any other tool implementing B natu-
rals, the partiality of these operations may have been overlooked: hence some formulas
might be provable when they should not.

As a conclusion for the theoretical side of BiCoax, we can state that our work, while
not ground-breaking, is useful. It helped the trimming down of previously uncovered
mistakes of the BBook. It has also helped and will help in stating how B types and struc-
tures match their “programming-like” counterparts as we did for arithmetic operations
on natural numbers. We shall now present how BiCoax fares on the more practical side.

6 Experimental results

Experimentations with BiCoax were twofold: using it in a purely automated way for
determining what the tools in the upper part of the toolchain are expected to provide and
interactively with B toy projects for getting a better idea of the completion of BiCoax.

6.1 At the end of the B toolchain

We inherited from B/Phox, the ancestor of BiCoax, a way of generating PhoX proof
obligations from B POs described in an XML format. We adapted the XSL stylesheet
for doing so to Coq instead of PhoX, resulting in the bgop2bicoax XSL stylesheet. The
transformation from a PO to BiCoax is straightforward: after inserting the importing
of the BLIB module of BiCoax, the formula is translated to a Coq theorem using the
B constructs defined in BiCoax. A tactic call is inserted, followed by a proof-saving
command. Nowadays this part of the toolchain is mostly used for correcting the PO-to-
BiCoax transformation step.

Our first tests were with a publicly available B project, the boiler, in a “case-study”
flavor and an “industrial” flavor. The PO generator of BRILLANT issues 2335 POs for
the case-study boiler and 2563 for the industrial boiler. PO generation is as close to the
atelierB as possible so as to make subsequent comparisons more relevant. In a nutshell,
successful proofs (see Tab. 3) correspond to typing proofs and are realized in 45s on
average with the (still experimental) firstorder Coq tactic. Failures come mostly
from B disambiguation errors (such as cartesian product and multiplication) or XSLT
transformation errors (missing constructors, etc). The various errors we encountered are
as follows:



T1: Cannot infer an instance for the implicit parameter U of app
T2: The reference ... was not found in the current environment
T3: Cannot infer a term for ...
T4: ’,’ expected after [binder list] (in [constr:binder constr])
T5: Cannot infer a type for ...
T6: The term "..." has type "..." while it is expected to have type "..."
T7: Attempt to save an incomplete proof

Case-study Industrial
Nbr PO 2335 2563
Nbr BPhoX 1871 43
Nbr BiCoax 237 52
Error T1 1446 24
Error T2 310 2450
Error T3 175 8
Error T4 66 15
Error T5 25 1
Error T6 20 -
Error T7 13 11

Table 3. Proof results

The discrepancy of T1 and T2 errors in the
proof results seems to be a consequence of the
more complex shape of expressions in the indus-
trial version of the boiler. In the end, the use of
BiCoax in an automated fashion seems possible
but will require corrections in the upper part of
the toolchain in the near future.

6.2 Using BiCoax interactively

It is our belief that the interface to proof tools
should be easy to use interactively, because on
non-trivial B projects the end-user will spend
most of his/her proving-time issuing commands
to the prover (the automated part is invisible, as
expected). Hence interactive proof shall be made

easy, which was also part of our motivation in using Coq as a proof tool.
As a quick test of the usability of BiCoax, we tried to prove two B toy projects,

the “LittleExample” project appearing in [1, Sec. 11.2] or [19] and a bounded stack,
with no further assumptions than the POs translated manually. As a result, the proofs
were successful and took no more than half an hour for each project. They are present
in the BMISC module of BiCoax along with the corresponding B projects in comment.
It is this somewhat unexpected success that turned our opinion to the idea that BiCoax
is almost ready for mundane proof tasks. Here follows a top-down proof tree of the
demonstration of the PO assessing that the read operation preserves the invariant of the
“LittleExample” machine:

` ∀(n,y).y ∈ FIN(N1)∧n ∈ N1⇒ (y∪{n}) ∈ FIN(N1)
intros

n : Z,y : (Ensemble Z),H : (y ∈ FIN(N1)∧n ∈ N1) ` (y∪{n}) ∈ FIN(N1)
rewrite commutativity 1

n : Z,y : (Ensemble Z),H : (. . .) ` ({n}∪ y) ∈ FIN(N1)
apply augmented set in finite sets

n : Z,y : (Ensemble Z),H : (. . .) ` (n,y) ∈ (N1×FIN(N1))
constructor

. . . ,H : (y ∈ FIN(N1)∧ . . .) ` y ∈ FIN(N1)
intuition

. . . ,H : (· · ·∧n ∈ N1) ` n ∈ N1
intuition

We perceived that our experience with proving the above projects could be better
though: some very trivial theorems were missing, such as the non-emptiness of a sin-
gleton, and tactics could have helped us solving repetitive proof tasks. In the future,
such interactive sessions shall give us directions for automating the proof of B projects,
maybe to the point of proposing specialized tactics for domain-specific B projects.

Because the projects we proved are not very complicated, we could not illustrate
here the full extent of using other tactics provided by Coq. For instance, when proving



equality of arithmetic equations we can use the ring tactic: it normalizes arithmetic
terms and attempts to prove their equality. This tactic is actually defined for structures
that form a ring (hence here, natural numbers) but it could be applied to any other ring
(e.g. one formed with set operations). Another high-level tactic called omega follows
the same idea for mixes of equations and inequations in Presburger arithmetic.

7 Conclusion

We have proposed a shallow embedding of the mathematical foundations of B into Coq,
in order to provide a proof tool for B based on a generic proof assistant and in order
to validate the definitions and theorems of the BBook through implementation. When
relevant, we proposed handier alternative definitions, either ours or from Coq’s library.
We systematically proved the equivalence with the corresponding B definitions in the
process, to the extent allowed by a shallow embedding.

Our implementation covers the first two and a half chapters of the BBook up to
and almost including the integers, which amounts to about 1100 theorems. This imple-
mentation helped us uncover minor BBook mistakes not documented elsewhere. It also
brought more focus on confusing or overlooked parts of B. For instance, the difference
between “B typing” as set belonging and typing in the sense of type theory is hopefully
clearer. Moreover we exhibited potential pitfalls of the partiality of B arithmetic opera-
tors (subtraction, division and natural logarithm) which might have been overlooked in
other implementations of B.

Experimental results showed that an automated use of BiCoax is feasible but it
mostly requires changes in the upper part of the B toolchain. The ease, initially unex-
pected, with which we proved two B toy projects leads us to believe that BiCoax is
almost ready for the proof of mundane B projects.

The short-term perspectives include what we know or perceive BiCoax lacks: the
sections of the BBook left to be implemented, trivial theorems not present in the BBook
and tactics for repetitive proof tasks. Long-term perspectives include the implementa-
tion of several of the numerous B extensions that appear in the literature. Such exten-
sions consist for instance in the introduction of other datatypes in B or the extension of
B with a temporal logic [17].
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