
Towards Validating a Platoon of Cristal Vehicles
using CSP‖B?

Samuel Colin1, Arnaud Lanoix1, Olga Kouchnarenko2, and Jeanine Souquières1

1 LORIA – DEDALE Team – Campus scientifique
F-54506 Vandoeuvre-Lès-Nancy

{firstname.lastname}@loria.fr
2 LIFC – TFC Team – 16 route de Gray

F-25030 Besançon
{firstname.lastname}@lifc.univ-fcomte.fr

Abstract. The so-called platooning problem consists in making autonomous ve-
hicles move in a convoy. It crosses several domains: distributed systems, embed-
ded systems, multi-agent systems and critical systems. We thus propose to use
the combination named CSP‖B of two well-known formal methods to assess and
verify properties of this complex system. To that end we make use of previous
theoretical results on CSP‖B. We also illustrate how this methodology spans the
multiple composition levels of the resulting model.

Key words: formal methods, CSP‖B, distributed systems, case study, platooning

1 Introduction

This paper is dedicated to the validation of land transportation systems. These sys-
tems, which are both distributed and embedded, require the expression of functional as
well as non functional-properties, for example time-constrained response and availabil-
ity of required services. Their dual nature is problematic: distributedness may exhibit
behaviours hard to understand while embeddedness imposes the satisfaction of safe-
ty/security/confidence requirements.

To address this problem we use the CSP‖B combination [1] of well-established
formal methods, CSP [2] and B [3]. Our case study is a convoy of so-called Cristal
vehicles seen as a multi-agent system which evolves following the Influence/Reaction
model (I/R) [4] in which agents are described separately from the environment.

This convoy, called a platoon, is a set of autonomous vehicles which have to move
following the path of the leader in a row. Its control concerns both a longitudinal con-
trol, i.e. maintaining an ideal distance between each vehicle, and a lateral control, i.e.
each vehicle should follow the track of its predecessor. As both controls can be stud-
ied independently [5] we will only focus on the longitudinal one. The Cristal driving
system perceives information about its environment before producing an instantaneous

? This work is supported by the French National Research Agency ANR-06-SETI-017
TACOS project, (http://tacos.loria.fr), and the pôle de compétitivité Alsace/Franche-
Comté/CRISTAL project (http://www.projet-cristal.net).

Fig. 1. A platoon of Cristals

acceleration passed to its engine. As we consider only longitudinal control, we repre-
sent the position of the ith Cristal by a single variable xposi and its velocity by speedi.
The behaviour of the Cristal controllers can be summarised as follows, see Fig. 1:

(i) perception step: each Cristal driving system receives its velocity p_speedi and its
position p_xposi, from the physical part of the Cristal. Furthermore, it receives by
network communication the velocity p_pre_speedi and the position p_pre_xposi
of its leading Cristal;

(ii) decision step: each Cristal driving system can influence its speed and position
by computing and sending to its engine an instantaneous acceleration acceli. The
acceleration can be negative, corresponding to the braking of the Cristal;

(iii) reaction step: xposi and speedi are updated, depending on the current speed
speedi of the Cristal and a decided instantaneous acceleration acceli of the en-
gine.

Our approach is “bottom-up”-oriented: B machines describe the various compo-
nents of a Cristal vehicle while CSP expresses their assembly at the level of a single
vehicle and at the level of the whole convoy3. Our experience shows that writing and
checking CSP‖B specifications can help eliminate errors and ambiguities in an assem-
bly and its communication protocols.

2 Theoretical Background on CSP‖B

CSP‖B is a combination of formal methods aimed at exploiting the best features of
CSP and B, which happen to complement each other. Indeed, basic components are B
machines interacting with the rest of the world through operation calls. The assembly
is provided by CSP whose processes describe how B machines are scheduled and com-
municate with each other. We don’t explain here the B and CSP semantics though for
lack of space.

The main problem with combined specifications is consistency: CSP and B parts
should not be contradictory. The consistency is obtained through a verification tech-
nique [6] consisting of verifying the divergence-freedom of a B machine-CSP process
coupling, and its deadlock-freedom.

3 CSP‖B specifications are available at http://tacos.loria.fr/platoon.zip.

The divergence-freedom of (P‖M) can be deduced by using a technique based on
Control Loop Invariants (CLI) [1]. Divergence-freedom is verified by exhibiting a pred-
icate that holds for each possible path the process P can take. Let BBODYS(p) be the
rewriting of the pth path S(p) of P into B using the translation rules of [1]. Here are the
most important theorems we will use throughout this paper:

Theorem 1 ([7, Theorem 1]). If there exists a predicate CLI such that for each BBODYS(p)

in P, CLI ∧ I ⇒ [BBODYS(p)] CLI, then (P‖M) is divergence-free.

The deadlock-freedom of (P‖M) can be deduced by establishing the deadlock-
freedom of the P part.

Theorem 2 ([6, Theorem 5.9]). If P is a CSP controller for M with no blocking asser-
tion on any machine channels of M, and P is deadlock-free in the stable failures model,
then (P‖M) is deadlock-free in the stable failures model.

The following result is useful for establishing safety properties of controlled com-
ponents. It means that the trace refinement established purely for the CSP part of a
controlled component suffices to ensure the trace refinement for the overall component.

Corollary 1 ([6, Corollary 7.2]). For any controller P and any B machine M, one has
if S vT P then S vT (P‖M).

The given results are also generalised in [6] to a collection of B machine-CSP pro-
cess couples.

3 Specifying a Single Cristal

A Cristal vehicle is composed of two parts: its engine and a driving system, as depicted
in Fig. 2. Each part is built upon a B machine controlled by an associated CSP process.

Fig. 2. Architectural view of a Cristal

The properties we want to be ensured by the model are deadlock-freedom of com-
munications between components of the vehicle and accuracy of the information about
position and speed. The former property is motivated by the fact that a vehicle could
become stuck because two components wait for each other. The latter property can be
interpreted as the fact that a decided acceleration should match as closely as possible the
perceptions. A solution then can be to force the Cristal to alternate between “perception
mode” and “reaction mode”. This is what we strive for as a safety property.

3.1 The Engine

MODEL Engine(Id)
VARIABLES

speed, xpos
OPERATIONS

speed0←− getSpeed = ...
xpos0←− getXpos = ...
setAccel(accel) =

PRE
accel ∈ MIN_ACCEL..MAX_ACCEL

THEN
ANY new_speed
WHERE new_speed = speed + accel
THEN

IF (new_speed > MAX_SPEED)
THEN

xpos := xpos + MAX_SPEED
‖ speed := MAX_SPEED

ELSE
IF (new_speed < 0)
THEN

xpos := xpos − (speed × speed) / (2 × accel)
‖ speed := 0

ELSE
xpos := xpos + speed + accel / 2
‖ speed := new_speed

END
END

END
END

The engine is built upon a B machine that
describes its knowledge about its current
speed and position, and its reaction when
passed a new instantaneous acceleration.

The CtrlEngine CSP controller al-
ternates PerEngine and ActEngine. In
PerEngine, we call through getSpeed?speed
and getXpos?xpos the homonymous B
methods to retrieve the speed and the posi-
tion of the Cristal which are then passed on
to engineInfo.id!xpos!speed. In ActEngine,
a new instantaneous acceleration is received
through engineAccel.id?accel and passed on
through setAccel!accel to the B machine
which calculates the vehicle position and
speed updates w.r.t. this new acceleration.

The whole engine component is then
defined as the composition, for a given
id, of the Engine(id) machine and its
CtrlEngine(id) controller.

PerEngine(id) =
getXpos ? xpos→ getSpeed ? speed→ engineInfo.id ! xpos ! speed→ ActEngine(id)
�
getSpeed ? speed→ getXpos ? xpos→ engineInfo.id ! xpos ! speed→ ActEngine(id)

ActEngine(id) =
engineAccel.id ? accel → setAccel ! accel → PerEngine(id)

CtrlEngine(id) = PerEngine(id)

Verification. The Engine(Id) B machine consistency is successfully checked using
B4Free. The CtrlEngine(id) controller deadlock-freedom (in the stable failures model)
and its divergence-freedom are successfully checked with FDR2.

The composition of the B machine and the controller is verified for divergence-
freedom by applying Theorem 1: it is specific to CSP‖B and is not supported by tools
hence the translation to B is done by hand. The chosen CLI is actually as simple as
the > predicate modulo the mandatory typing predicates. Then, by way of Theorem 1,
we deduce that (CtrlEngine(id) ‖Engine(id)) is divergence-free. Deadlock-freedom of
(CtrlEngine(id) ‖Engine(id)) is obtained from the deadlock-freedom of CtrlEngine(id)
and the application of Theorem 2 as well.

3.2 The driving system

The (CtrlDrivingSystem‖DrivingSystem) controller‖B machine construction is built in
a similar way. This driving system can update its perceptions and decide of an accel-
eration passed to the engine later on. hciSpeed, hciAccel correspond to the interaction

with a human driver (if the vehicle is in SINGLE or LEADER mode). comIn and comOut
correspond to the interaction with the leading and following vehicle (PLATOON mode).
engineInfo and engineAccel are used to exchange with the engine.

Using the same techniques and theorems as for the engine, the driving system is
shown divergence-free and deadlock-free.

3.3 The Cristal(mode,id) Assembly

A Cristal is defined as the composition of the engine and the driving system:

Cristal(mode,id) =(CtrlDrivingSystem(mode,id) ‖ DrivingSystem(id))f
{|engineInfo,

engineAccel|}

(CtrlEngine(id) ‖ Engine(id))

Divergence-freedom is obtained by applying the generalised version of Theorem 1
to the divergence-freedom of both components (CtrlEngine(id) ‖Engine(id)) and (CtrlDri
vingSystem(mode,id)‖DrivingSystem(id)). Deadlock-freedom of the Cristal stems from
deadlock-freedom of (CtrlEngine(id) ‖ CtrlDrivingSystem(mode,id)) and by applying
the generalised version of Theorem 2.

Let us note that earlier versions of the models had deadlocks exhibited by the FDR2
tool: having access to the faulty traces helped us understand the errors and modify the
driving system controller with a tighter scheduling leading to deadlock-freedom.

Safety Property. The property stating that perception and reaction should always al-
ternate can be re-expressed as a CSP process:

Property(id) = engineInfo.id?xpos?speed→ engineAccel.id?accel→ Property(id)

Checking that the Cristal meets this property is akin to checking that there is a trace
refinement between it and the Cristal. This is achieved by checking that Property(id) vT
CtrlEngine(id) ‖CtrlDrivingSystem2(mode,id), from which it can be deduced by Corol-
lary 1 that Property(id) vT Cristal (mode,id): the property is refined hence satisfied.

4 Specifying a Platoon of Cristals

Fig. 3. A Platoon of four Cristals

Once we have a correct model for a single Cristal, we can focus on the specification
of a platoon, as shown Fig. 3. We want the Cristals to avoid going stale when they are

in the PLATOON mode. This might happen because one Cristal waits for information
from its leading Cristal, for instance, i.e. the communications are deadlocked.

The first Cristal of the platoon runs in the LEADER mode, while the others run in
the PLATOON mode. A process Net(id, id2) is associated with each Cristal for managing
communication: it receives information from id before sending these data to id2. Finally,
the platoon is defined by the parallel composition of all the Cristals and all the Nets,
synchronised on the communication channels:

Platoon(n) =
(
Cristal(LEADER,1)9

(g
id:{2..n} Cristal(PLATOON,id)

))
f

{|comIn,comOut|}

((g
id:{1..n-1} Net(id,id+1)

)
9Net(n,n)

)

Verification. Using FDR2, we successfully check that Net(id, id2) is deadlock-free and
divergence-free. As each Cristal and each Net have been proved divergence-free, the
platoon is divergence-free. To achieve consistency checking, the parallel composition
of the CSP parts of each Cristal and Net is shown deadlock-free, thanks to FDR2. Con-
sequently, by Theorem 2 the platoon is deadlock-free too. This verification validates
that the communications (expressed through the Nets components) do not deadlock.

5 Conclusion

The development of a new type of urban vehicle and the need for its certification ne-
cessitate their formal specification and validation. We propose a formal CSP‖B speci-
fication development of an autonomous vehicle’s components, and an architecture for
assembling vehicles in a convoy to follow the path of the leader vehicle in a row. Ap-
plication of known results to the composition in the CSP‖B framework and verification
using existing tools – the FDR2 model-checker and the B4Free prover – allow us to
ensure the consistency of the whole multi-agent system, in a compositional manner.
Having formal CSP‖B specifications helps – by establishing refinement relations – in
preventing incompatibility among various implementations. Moreover, writing formal
specifications helps in designing a way to manage the multiple architectural levels.

References

1. Treharne, H., Schneider, S.: Using a process algebra to control B OPERATIONS. In: 1st
International Conference on Integrated Formal Methods, Springer Verlag (1999) 437–457

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
3. Abrial, J.R.: The B Book. Cambridge University Press (1996)
4. Ferber, J., Muller, J.P.: Influences and reaction : a model of situated multiagent systems. In:

2nd Int. Conf. on Multi-agent Systems. (1996) 72–79
5. Daviet, P., Parent, M.: Longitudinal and lateral servoing of vehicles in a platoon. In: Proceed-

ing of the IEEE Intelligent Vehicles Symposium. (1996) 41–46
6. Schneider, S.A., Treharne, H.E.: CSP theorems for communicating B machines. Formal

Aspects of Computing, Special issue of IFM’04 (2005)
7. Schneider, S., Treharne, H.: Communicating B machines. In Bert, D., Bowen, J.P., Hen-

son, M.C., Robinson, K., eds.: Formal specification and development in Z and B (ZB 2002).
Volume 2272 of LNCS., Springer Verlag (2002) 416–435

