
Towards Validating a Platoon of Cristal Vehicles
using CSP‖B?

Samuel Colin1, Arnaud Lanoix1, Olga Kouchnarenko2, and Jeanine Souquières1

1 LORIA – DEDALE Team – Campus scientifique
F-54506 Vandoeuvre-Lès-Nancy, France
{firstname.lastname}@loria.fr

2 LIFC – TFC Team – 16 route de Gray
F-25030 Besançon, France

{firstname.lastname}@lifc.univ-fcomte.fr

Abstract. The complexity of specification development and verification of large
systems has to be mastered. In this paper a specification of a real case study, a
platoon of Cristal vehicles is developed using the combination, named CSP‖B,
of two well-known formal methods. This large – both distributed and embedded
– system typically corresponds to a multi-level composition of components that
have to cooperate. We show how to develop and verify the specification and check
some properties in a compositional way. We make use of previous theoretical
results on CSP‖B to validate this complex multi-agent system.

1 Introduction

This paper is dedicated to the validation of land transportation systems taken as an ap-
plication domain. These systems, which are both distributed and embedded, require to
express functional as well as non functional-properties, for example time constrained
response and availability of required services. As with any distributed system, a compo-
nent assembly may appear obscure behaviours that are hard to understand and difficult
to debug. As with any embedded system, components and their composition should
satisfy safety/security/confidence requirements. As component-based systems are om-
nipresent, it is important to ensure their correct assembly.

Our goal is to apply the CSP‖B combination [1] of well-established formal methods,
CSP [2] and B [3], to a specific distributed and embedded system. This case study is
a convoy of so-called Cristal vehicles seen as a multi-agents system. We motivate the
use of this CSP‖B combination by the existence of pure B models describing the agents
and vehicles behaviours [4]. By using CSP for composing B machines we aim at giving
these B models the architectural, compositional description they lack.

As a comparison point, in [1] Schneider & Treharne illustrate their use of CSP‖B
with a multi-lift system that can be seen as a distributed system using several instances
of a lift, minus the fact that the interactions of the lifts are actually centralised in a

? This work has been partially supported by the French National Research Agency (ANR)/ANR-
06-SETI-017 TACOS project, (http://tacos.loria.fr), and by the pôle de compétitivité
Alsace/Franche-Comté/CRISTAL project (http://www.projet-cristal.org).

2 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

dedicated dispatcher. Our goal is very similar, but in contrast to [1], we want to avoid
relying on a centralised, or orchestrating, controller.

Similar works exist on structured development with the B method using decompo-
sition, hence in a more “top-down” approach, and refinement. For instance, Bontron
& Potet [5] propose a methodology for extracting components out of the enrichments
brought by refinement. The extracted components can then be handled to reason about
them so as to validate new properties or to detail them more. The interesting point is
that their approach stays within the B method framework: this means that the modelling
of component communication and its properties has to be done by using the B notation,
which can quickly get more cumbersome than an ad-hoc formalism like CSP. Abrial [6]
introduces the notion of decomposition of an event system: components are obtained by
splitting the specification in the chain of refinements into several specifications express-
ing different views or concerns about the model. Attiogbé [7] presents an approach dual
to the one of Abrial: event systems can be composed with a new asynchronous paral-
lel composition operator, which corresponds to bringing “bottom-up” construction to
event systems. In [8], Bellegarde & al. [8] propose a “bottom-up” approach based on
synchronisation conditions expressed on the guards of the events. The spirit of the re-
sulting formalism is close to that of CSP‖B. Unfortunately it does not seem to support
message passing for communication modelling.

Our approach is rather “bottom-up” oriented: the B machines describe the various
components of a Cristal vehicle while CSP is used for expressing their assembly at the
level of a single vehicle and at the level of the whole convoy3. Our experience, reported
here, shows that writing and checking CSP‖B specifications can help eliminate errors
and ambiguities in an assembly and its communication protocols. We also believe that
writing formal specifications can aid in the process of designing autonomous vehicles.

This paper is organised as follows. Section 2 introduces the platooning case study
with the properties we will focus on. Section 3 briefly introduces the theoretical back-
ground on CSP‖B. Section 4 presents the specification and the verification process of a
single Cristal vehicle whereas Section 5 is dedicated to a platoon of vehicles. Section 6
ends with some perspectives of this development.

2 Case Study Presentation : a Platoon of Vehicles

The CRISTAL project aims at the development of a new type of urban vehicle with
new functionalities and services. One of its major cornerstones is the development,
certification and validation of a platoon of vehicles.

A platoon is a set of autonomous vehicles which have to move in a convoy, i.e.
following the path of the leader (possibly driven by a human being) in a row. Its control
concerns both a longitudinal control, i.e. maintaining an ideal distance between each
vehicle, and a lateral control, i.e. each vehicle should follow the track of its predecessor.
Both controls can be studied independently [9]. In the sequel, we will only focus on the
longitudinal one.

3 CSP‖B specifications discussed in this paper are available at
http://www.loria.fr/~lanoix/platoon.zip.

Validating a Platoon of Cristal Vehicles 3

Fig. 1. A platoon of Cristals

Through the projects’ collaborations, we have decided to consider each vehicle,
named Cristal in the following, as an agent of a Multi-Agent System (MAS). The
Cristal driving system perceives information about its environment before producing
an instantaneous acceleration passed to its engine. In this context, we consider the pla-
tooning problem as a situated MAS which evolves following the Influence/Reaction
model (I/R) [10] in which agents are described separately from the environment.

As we only focus on the longitudinal control of the platoon, the considered space is
one-dimensional. Hence the position of the ith Cristal is represented by a single variable
xposi, its velocity by speedi. The behaviour of the Cristal controllers can be summarised
as follows, see Fig. 1:

(i) perception step: each Cristal driving system receives its velocity p_speedi and its
position p_xposi, from the physical part of the Cristal. Furthermore, it receives by
network communication the velocity p_pre_speedi and the position p_pre_xposi
of its leading Cristal

(ii) decision step: each Cristal driving system can influence its speed and position
by computing and sending to its engine an instantaneous acceleration acceli. The
acceleration can be negative, corresponding to the braking of the Cristal

(iii) reaction step: xposi and speedi are updated, depending on the current speed
speedi of the Cristal and a decided instantaneous acceleration acceli of the en-
gine

Our goal is the expression of the model with a broader range of granularity than the
existing B model [4]. Our CSP‖B model should span more architectural levels (from
the component of a vehicle to the whole convoy) and explicitly model communications.
It is thus necessary to ensure that communications between components in the resulting
architecture do not suffer from design errors, e.g. a scheduling leading to deadlocks.

3 Theoretical Background on CSP‖B

The B machines specifying components are open modules which interact by the autho-
rised operation invocations. When developing distributed and concurrent systems, CSP
is used to describe an execution order for invoking the B machines operations. CSP de-
scribes processes – objects or entities which exist independently, but may communicate

4 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

with each other. There is a lot of works on CSP‖B. The reader interested by theoretical
results is referred to [1,11,12]; for case studies, see for example [13,14].

3.1 CSP Controllers

In the combined CSP‖B model, the B part is specified as a standard B machine4 without
any restriction on the language, while a controller for a B machine is a particular kind
of CSP process, called a CSP controller.

CSP controllers obey the following (subset of the) CSP grammar:

P ::= c ? x ! v → P | ope ! v ? x → P |
b & P | P1 � P2 | S(p)

The process c ? x ! v → P can accept input x and output v along a communication
channel c. Having accepted x, it behaves as P. To interact with a B machine, a controller
makes use of machine channels which provide the means for controllers to synchronise
with the B machine. For each operation x ←− ope(v) of a controlled machine, there is
a channel ope ! v ? x in the controller corresponding to the operation call: the output
value v from the CSP description corresponds to input parameter of the B operation, and
the input value x corresponds to the output of the operation. A controlled B machine
can only communicate on the machine channels of its controller.

The behaviour of a guarded process b & P depends on the evaluation of the boolean
condition b: if true, it behaves as P, otherwise it is unable to perform any events. In
some works (e.g. [1]), the notion of blocking assertion is defined by using a guarded
process on the inputs of a channel to restrict these inputs: c ? x & E(x) → P. The exter-
nal choice P1 � P2 is initially prepared to behave either as P1 or as P2, with the choice
made on the occurrence of the first event. The expression S(p) is a recursive process
invocation.

In addition to the language for simple processes, CSP provides a number of opera-
tors to combine processes. In this paper the operators we are concerned with are P1 ‖E

P2, and 9i (P(i)).

– The sharing operator P1 ‖E P2 executes P1 and P2 concurrently, requiring that P1
and P2 synchronise on the events into the sharing alphabet E and allowing inde-
pendent executions for other events (not in E)5.

– The indexed form of the interleaving operator 9iP(i) executes the processes P(i) in
an independent manner without synchronisation. It is used to build up a collection
of similar processes independent from each other.

4 Because of lack of space, we only recall the idea behind consistency checking in the B method.
Roughly speaking, given a B machine and its invariant, the machine is said consistent if its
initialisation satisfies the invariant, and if, for each operation, assuming its precondition and
the invariant hold, the operation body satisfies the invariant.

5 Note that when combining a CSP controller P and a B machine M associated withP, the sharing
alphabet can be dropped: (P ‖α(M) M) ≡ P ‖ M.

Validating a Platoon of Cristal Vehicles 5

As for other process algebras, the denotational semantics of CSP is based on the
observation of process behaviours. In CSP, the three main semantic models use notions
of traces, stable failures, and failures/divergences (see [15]). In the trace semantics, a
process P is associated with the set of finite sequences of events that P can perform,
denoted traces(P). In the stable failures semantics, a process P is associated with the
set failure (P) of pairs of the form (tr , X), where tr is a finite trace in traces(P), and
X is the set of events that P cannot perform after the execution of the events of tr .
This model allows specifying the deadlocks of P. Finally, in the failures/divergences
semantics, a process P is associated with the set of its stable failures, and with the set
of its divergences. The process P is said divergent if it is in a divergent state where the
only possible events are internal (or invisible) events. The divergences set of P, denoted
divergences(P), is the set of traces tr such that P is in a divergent state after performing
events of tr .

The three most frequently used CSP refinement notions compute and compare the
semantic models of processes. Given two processes P and Q, we say

– P vT Q, Q refines P in the trace semantics if all the possible communication se-
quences that Q may perform, are also possible sequences for P;

– P vF Q, Q refines P in the stable failure semantics if failure (Q) ⊆ failures (P);
– P vFD Q, Q refines P in the failures/divergences model if failures (Q)⊆ failures (P)

and divergences(Q) ⊆ divergences(P).

The FDR2 model checker [16] provides determining deadlock and divergence free-
dom of individual CSP processes, and implements verification for each kind of refine-
ment.

3.2 Useful Results on CSP‖B

The main problem with combined specifications is the model consistency, in other
words, CSP and B parts should not be contradictory. To ensure the consistency of a
controlled machine (P‖M) in CSP‖B, a verification technique has been proposed [12]
consisting in verifying the following sufficient conditions:

– the divergence-freedom of (P‖M);
– the deadlock-freedom of P.

This verification technique can be generalised to a set of controlled machines (Pi ‖Mi)
evolving in parallel:

– the divergence-freedom of each (Pi ‖Mi);
– the deadlock-freedom of (P1‖P2‖ ... ‖Pn).

The divergence-freedom of (P‖M) can be deduced by using a technique based on
Control Loop Invariants (CLI). This technique involves the verification that each path
a controlling process may take, does not end up in a diverging state (a violation of
the precondition of a controlled method, for instance). For verifying that we reuse the
methodology introduced in [11]. It involves the translation of the various paths of the
controlling process up to recursive calls to itself, into B operations in a machine. This

6 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

machine is then augmented with a CLI, and this machine consistency checking is per-
formed: it is thus akin to verify that no path in the controlling process ends up in a
diverging state.

Let S(p) be a family of processes in a controller P, p helping to identify which
process we are referencing to. S(p) is of the following general form:

S(p) = path_1→ S(q) � ... � path_n→ S(r)
Let BBODYS(p) be the rewriting of S(p) into B using the translation rules of [11].

The whole controlling process P is then translated into a B machine, whose methods
are the various BBODYS(p) and whose invariant constitutes the chosen CLI.

If the rewriting of P into a B machine is consistent, it means all the operations
preserve the invariant. This in turn means that each process of the controller forms a
sequence of operation calls that maintain the CLI. This entails that the controller never
diverges in calling its controlled B machine, hence that the couple controller/B machine
is divergence-free. This is the matter of the following theorem:

Theorem 1 ([12, Theorem 1]). If CLI is a predicate such that

CLI ∧ I ⇒ [BBODYS(p)] CLI

for each BBODYS(p) in P, then (P‖M) is divergence-free.

The following result is useful for establishing trace properties of controlled compo-
nents. It means that the trace refinement established purely for the CSP part (possibly
using hidden events) of a controlled component suffices to ensure the trace refinement
for the overall controlled component (possibly using hidden events).

Corollary 1 ([1, Corollary 7.2]). For any controller P and any B machine M with the
alphabet α(M) of events one has:
1. If S vT P then S vT (P‖M)
2. If S vT P \ E and E⊆α(M), then S vT (P‖M) \ E

The following theorem is a composition result for establishing the whole system
divergence-freedom from the divergence-freedom of its components.

Theorem 2 ([1, Theorem 8.1]). If (Pi ‖Mi) is divergence-free for each i , then ‖i (Pi ‖Mi)
is divergence-free.

The consistency of a single controlled machine is achieved by the following re-
sult stating that the deadlock-freedom of (P‖M) can be deduced by establishing the
deadlock-freedom of the P part.

Theorem 3 ([1, Theorem 5.9]). If P is a CSP controller for M with no blocking asser-
tion on any machine channels of M, and P is deadlock-free in the stable failures model,
then (P‖M) is deadlock-free in the stable failures model.

Finally, the deadlock-freedom of multiple controlled machines ‖i (Pi ‖Mi) follows
from deadlock-freedom of the combination of the CSP parts ‖iPi. It achieves the multi-
ple controlled machines consistency checking.

Theorem 4 ([1, Theorem 8.6]). Given a collection of CSP controllers Pi and corre-
sponding B machines Mi, such that no controller has any blocking assertions on the
control channels: then if ‖iPi is deadlock-free in the stable failures model, then so too
is ‖i (Pi ‖Mi).

Validating a Platoon of Cristal Vehicles 7

4 Specifying a Single Cristal

We consider a Cristal vehicle composed of two parts: its engine and a driving system,
as depicted Fig. 2. Each part is itself built upon a B machine controlled by an associated
CSP process.

Fig. 2. Architectural view of a Cristal

We must ensure steady communications between Cristal components. For instance,
communications are broken if two components expect input from each other: in that
case the components cause the deadlock of the whole vehicle. We therefore state that
the communications between Cristal components should never cause a deadlock.

In an automatic mode, a Cristal must get information about its position and its speed
as accurate as possible so that its resulting acceleration is as accurate as possible. Thus
we do not want the Cristal to stay in the “perception mode” for too long. To avoid that,
a solution is to force the Cristal to alternate between “perception mode” and “reaction
mode”. This is what we strive for as a safety property.

The engine is built upon a B machine that describes its inner workings, i.e. its
knowledge of speed and position as well as how it updates them w.r.t. a given ac-
celeration. The speed and the position are passed on to the controller through the
getSpeed and getXpos methods/events. The acceleration is passed on to the engine
through the setAccel method/event. The CtrlEngine CSP controller receives acceleration
orders through the channel associated with the engineAccel event and sends information
about speed and position through the engineInfo event.

In a similar way, the driving system is composed of the DrivingSystem B machine
and its CtrlDrivingSystem CSP controller. The machine and its controller share the
setPerceptions and getInfluences events. The controller (and thus the compound con-
struction) communicates with the engine through the engineInfo,engineAccel channels.
It also communicates with the Human Control Interface (HCI) of the Cristal by way of
the hciSpeed, hciAccel events. Finally, it is also able to receive information from or to
send information to other Cristals through the comIn and comOut events, respectively.

The models of the engine and the driving system assume a common set of constants.
The constants below are replicated in both CSP and B specifications:

– The functioning modes of the Cristals: as a leader (LEADER), as a single vehicle
(SOLO) or in a platoon (PLATOON);

– Maximal and minimal allowed accelerations (MAX_ACCEL,MIN_ACCEL);

8 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

– Maximal speed (MAX_SPEED), the minimal allowed speed being 0;
– A set of unique identifiers for the Cristals (Ids).

We will now detail each component and the performed verifications.

4.1 The Engine

MODEL Engine(Id)
VARIABLES

speed, xpos
OPERATIONS

speed0←− getSpeed = /∗...∗/
xpos0←− getXpos = /∗...∗/
setAccel(accel) =

PRE
accel ∈ MIN_ACCEL..MAX_ACCEL

THEN
ANY new_speed
WHERE new_speed = speed + accel
THEN

IF (new_speed > MAX_SPEED)
THEN

xpos := xpos + MAX_SPEED
‖ speed := MAX_SPEED

ELSE
IF (new_speed < 0)
THEN

xpos := xpos − (speed × speed) / (2 × accel)
‖ speed := 0

ELSE
xpos := xpos + speed + accel / 2
‖ speed := new_speed

END
END

END
END

Fig. 3. The Engine(Id) B model

As stated earlier, the engine is a behavioural
component reacting to a given acceleration
for speeding up or slowing down a Cristal
vehicle. This behaviour is described by a
Engine(Id) B machine illustrated in Fig. 3.
Id6 is a natural number that uniquely iden-
tifies a Cristal. It is used at the CSP level
in order to model interactions with other
Cristals.

The speed←− getSpeed() and xpos
←− getXpos() methods capture data from
the engine to pass them on to whomever
needs it (say, the HCI, for instance). The
setAccel(accel) method models how the
Cristal behaves when passed a new instan-
taneous acceleration.

The B machine is made able to com-
municate by adding a CSP model for con-
trolling it. This model, called CtrlEngine(id)
and depicted in Fig. 4, schedules the calls to
its various methods. The getSpeed ? speed
and getXpos ? xpos event calls the homony-
mous methods of the B machine to retrieve

the speed and the position of the Cristal. Similarly, the controller passes a new instan-
taneous acceleration on through setAccel ! accel to the B machine.

CtrlEngine_perceptions(id) =
getXpos ? xpos→ getSpeed ? speed→ engineInfo.id ! xpos ! speed→ CtrlEngine_actions(id)
�
getSpeed ? speed→ getXpos ? xpos→ engineInfo.id ! xpos ! speed→ CtrlEngine_actions(id)

CtrlEngine_actions(id) =
engineAccel.id ? accel → setAccel ! accel → CtrlEngine_perceptions(id)

CtrlEngine(id) = CtrlEngine_perceptions(id)

Fig. 4. The CtrlEngine(id) CSP controller

6 In the whole model we use id but as it is a reserved keyword in B we have to resort to denoting
it Id for the B machines.

Validating a Platoon of Cristal Vehicles 9

Communications are achieved with the engineInfo and engineAccel events. The for-
mer sends the current speed and position to requesting components. The latter sets a
new acceleration for the engine. The event engineInfo.id ! xpos ! speed has a Cristal
identifier as a synchronisation channel and the Cristal position and speed as output
channels. Similarly, the event engineAccel.id ? accel has also a Cristal identifier as a
synchronisation channel and an acceleration as an input channel.

The protocol defined by the controller is very simple: either it asks the machine
about the speed and the position (in any order) and passes it on the engineInfo event,
or sets a new acceleration passed on by the engineAccel event. Information request and
acceleration setting alternate: CtrlEngine_perceptions calls CtrlEngine_actions which in
turn calls CtrlEngine_perceptions again.

REFINEMENT CtrlEngine_ref(Id)
VARIABLES

xpos_csp, speed_csp, cb
INVARIANT

xpos_csp ∈ Positions_csp
∧ speed_csp ∈ Speeds_csp
∧ cb ∈ 0..2
OPERATIONS
CtrlEngine =

BEGIN
cb := 1

END;
CtrlEngine_perceptions =

BEGIN
CHOICE

BEGIN
xpos_csp←− getXpos ;
speed_csp←− getSpeed ;
cb := 2
END

OR
BEGIN
speed_csp←− getSpeed ;
xpos_csp←− getXpos;
cb := 2
END

END
END;

CtrlEngine_actions =
BEGIN

ANY accel_csp WHERE
accel_csp ∈ Accels_csp

THEN
setAccel(accel_csp);
cb := 1

END
END

Fig. 5. B rewriting of
CtrlEngine(id)

The whole engine component is then defined as the com-
position of the Engine(id) machine and its CtrlEngine(id) con-
troller for a given Cristal identifier id:

(CtrlEngine(id) ‖ Engine(id))

Verification. The Engine(Id) B machine consistency is
successfully checked using the B4Free proof tool. The
CtrlEngine(id) controller deadlock-freedom (in the stable fail-
ures model) and its divergence-freedom are successfully
checked. These verifications have been done with the FDR2
model-checking tool

The composition of the B machine and the controller is
verified for divergence-freedom. The verification is specific to
CSP‖B and is not supported by tools and is described in The-
orem 1. As the verification involves the translation of the CSP
process to B, we illustrate the translation of CtrlEngine(id) in
Fig.5. Its CLI is actually as simple as the> predicate modulo
the mandatory typing predicates.

Once all these properties are established, we can use the
theorems of Sect. 3.2 for deducing results about the whole
component:

– By way of Theorem 3 and the fact that CtrlEngine(id)
is deadlock-free, we deduce the deadlock-freedom of
(Engine(id)‖CtrlEngine(id)) in the stable failures model.

– By way of Theorem 1 and the fact that the B rewrit-
ing of CtrlEngine(id) is consistent, we deduce that
(CtrlEngine(id) ‖Engine(id)) is divergence-free.

4.2 The Driving System

For the driving system whose CSP behaviour is given Fig. 6, there are three modes to
function: SOLO, LEADER or PLATOON. In the SOLO mode, it receives an acceleration
from the pilot via the HCI passed on through hciAccel. id ? accel and sends this desired

10 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

CtrlDrivingSystem(mode,id) =
((mode == SOLO) ∨ (mode == LEADER) &
hciAccel. id ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem(mode,id)))
�

((mode == PLATOON) &
getInfluences ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem(mode,id)))
�
((mode == SOLO) &
engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ please_compress(CtrlDrivingSystem(mode,id)))
�
((mode == LEADER) &
engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ please_compress(CtrlDrivingSystem(mode,id)))
�
((mode == PLATOON) &
engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ comIn.id ? preSpeed ? preXpos→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ please_compress(CtrlDrivingSystem(mode,id)))

Fig. 6. The CtrlDrivingSystem(mode,id) CSP Controller

acceleration to the engine through engineAccel.id ! accel. It can also request Cristal
information from the engine via engine Info . id ? myXpos ? mySpeed so as to make
the HCI display it (hciSpeed.id ! mySpeed).

The LEADER mode is very similar to the SOLO mode. The only difference concerns
an additional sending of the Cristal information to another Cristal via comOut.id ! my
Speed ! myXpos.

The PLATOON mode is the mode that actually makes use of a DrivingSystem B
machine not given here: acceleration is obtained by a call to the getInfluences method
and the result is passed on the engine. The data required for the machine to compute
an accurate speed are obtained from the engine (engineInfo.id ? myXpos ? mySpeed)
and the leading Cristal comIn.id ? preSpeed ? preXpos. Once the data is obtained, it is
passed on to the B machine through the setPerceptions method.

The whole component parametrised by the Cristal identifier and its chosen mode is
defined as:

(CtrlDrivingSystem(mode,id) ‖ DrivingSystem(id))

Verification. For the driving system the properties to check are the same as for the
engine component:

– The DrivingSystem(id) B machine is consistent.
– For every possible mode, the CtrlDrivingSystem(mode,id) CSP controller is deadlock-

free in the stable failures model, and it is divergence-free.
– (CtrlDrivingSystem(mode,id)‖DrivingSystem(id)) is deadlock-free.
– (CtrlDrivingSystem(mode,id)‖DrivingSystem(id)) is divergence-free.

Note 1. At this point of the models development, verifications become time-consuming
for the CSP specifications. The way the processes were modelled (especially for the
driving system) made FDR2 take a long time to check deadlock-freedom, for instance.
We thus use the FDR2 “compression functions” feature which gives means to speedup

Validating a Platoon of Cristal Vehicles 11

the checking. These functions have no influence on the model itself, but on the way
FDR2 explores state space: FDR2 attempts to shrink the state space with specific tech-
niques which may be more or less fruitful depending on the nature of the model [16].
Using compression gives us interesting speedups in verifying the CSP models from
there.

4.3 The Assembly Cristal(mode,id)

As illustrated in Fig. 2, a Cristal is defined as the composition of the engine and the
driving system:

Cristal(mode,id) =

(CtrlEngine(id) ‖ Engine(id))
n

{|engineInfo,
engineAccel|}

(CtrlDrivingSystem(mode,id) ‖ DrivingSystem(id))

Verification. Divergence-freedom is obtained by applying Theorem 2 to the divergence-
freedom of both components (CtrlEngine(id) ‖Engine(id)) and (CtrlDrivingSystem(mode,
id) ‖DrivingSystem(id)).

Deadlock-freedom of the Cristal stems from deadlock-freedom of (CtrlEngine(id) ‖
CtrlDrivingSystem(mode,id)) (the controllers alone) and applying Theorem 4 to the con-
trollers accompanied by their B machines. Deadlock-freedom as verified by FDR2 is not
guaranteed for Cristal (mode,id). FDR2 gives some trace examples leading to a dead-
lock. For instance, a deadlock happens when the engine attempts to send information to
the driving system engineInfo.id ! xpos ! speed while the driving system attempts to
send an acceleration to the engine engineAccel.id ! accel.

More generally, deadlocks are due to differing expectations from the engine and the
driving system: the engine was attempting to send information while the driving system
was attempting to send an acceleration, or the engine was expecting an acceleration
while the driving system was expecting the Cristal information. This suggested the need
for a tighter scheduling of the communications between components.

CtrlDrivingSystem Revisited. To establish deadlock-freedom and fix the problem
above, the CSP controller of the driving system has been modified. In fact, the new
version of the driving system imposes a scheduling of the process. In the same way as
the engine alternates between sending information and receiving a new acceleration, the
driving system alternates between receiving information, for dispatching it to the HCI
or to the automated driving system, and sending new accelerations, obtained from the
HCI or from the automated driving system. The new CtrlDrivingSystem2(mode,id) CSP
controller is given Fig. 7.

As previously, the divergence-freedom is obtained through Theorem 2 and divergence-
freedom of both CSP‖B compounds. Moreover, the deadlock-freedom checking is suc-
cessful this time: CtrlEngine(id) ‖CtrlDrivingSystem2(mode,id) is deadlock-free, hence
by Theorem 4 Cristal2 (mode,id) is deadlock-free. This verification achieves the re-
quirement expressed at the beginning of Sect. 4 where we specified that the communi-
cations between components inside a vehicle should not deadlock. Cristal2 is the same
as Cristal but with the corrected driving system.

12 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

CtrlDrivingSystem_perceptions(mode,id) =
((mode == SOLO) &
engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ please_compress(CtrlDrivingSystem_actions(mode,id)))
�
((mode == LEADER) &
engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ please_compress(CtrlDrivingSystem_actions(mode,id)))
�
((mode == PLATOON) &
engineInfo.id ? myXpos ? mySpeed→
hciSpeed.id ! mySpeed→ comOut.id ! mySpeed ! myXpos→ comIn.id ? preSpeed ? preXpos→
setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed→ please_compress(CtrlDrivingSystem_actions(mode,id)))

CtrlDrivingSystem_actions(mode,id) =
((mode == SOLO) ∨ (mode == LEADER) & −− new accel from user
hciAccel. id ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem_perceptions(mode,id)))
�

((mode == PLATOON) & −− new accel from DECISION
getInfluences ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem_perceptions(mode,id)))

CtrlDrivingSystem2(mode,id) = CtrlDrivingSystem_perceptions(mode,id)

Fig. 7. The CSPCtrlDrivingSystem controller revisited

Safety Property. The safety property we informally expressed at the beginning of
Sect. 4 stated that perception and reaction should alternate while the Cristal functions.
We can rephrase it here more precisely as the fact that the data – speed and position
– are always updated (engineInfo) before applying an instantaneous acceleration to the
engine (engineAccel). This ordering of events should constitute a cycle. This property
is captured as a CSP process:

Property(id) = engineInfo.id?xpos?speed→ engineAccel.id?accel→ Property(id)

We need to show that the Cristal meets this specification. For that, we successfully
check – using FDR2 – that there is a trace refinement between the CSP part of Cristal2
and Property, i.e. Property(id) vT CtrlEngine(id) ‖CtrlDrivingSystem2(mode,id). Then
by Corollary 1 we obtain Property(id) vT Cristal2 (mode,id), i.e. the property is satis-
fied.

5 Specifying a Platoon of Cristals

Once we dispose of a correct model for a single Cristal, we can focus on the specifi-
cation of a platoon, as shown Fig. 8. We want the various Cristals to avoid going stale
when they are in the PLATOON mode. This might happen because one Cristal waits for
information from its leading Cristal, for instance. In other words, we do not want the
communications in the convoy to deadlock. This is what we will strive for as a safety
property for the platoon.

5.1 A Communication Medium

Communications between two successive Cristals are managed at a new layer. Conse-
quently, a new component, called Net(id, id2), is added to each Cristal for managing

Validating a Platoon of Cristal Vehicles 13

Fig. 8. A Platoon of four Cristals

communication. This communication medium receives the speed and the position from
the Cristal identified by id before sending these data to the next Cristal identified by
id2. Net(id, id2) is defined by the CSP process given Fig. 9. When the Cristal has no
successor in the platoon, Net(id, id2) only consumes the data.

Net(id, id2) =
((id != id2) & comOut.id ? speed ? xpos→ comIn.id2 ! speed ! xpos→ Net(id,id2))
�
((id == id2) & comOut.id ? speed ? xpos→ Net(id,id2))

Fig. 9. CSP model Net(id, id2)

Using FDR2, we successfully check that Net(id, id2) is deterministic, deadlock-free
in the stable failures model and divergence-free.

5.2 A Platoon of Cristals

A platoon of n Cristals is defined as the parallel composition of n Cristals and n com-
munication mediums.

– The first Cristal of the platoon functions in the LEADER mode, while the others
function in the PLATOON mode. The Cristals are independent from each other,
consequently their composition is specified using the interleaving operator.

Cristals(n) = Cristal2(LEADER,1)9

 o

id:{2..n}

Cristal2(PLATOON,id)

– In the platoon, a Net component is associated with each Cristal. Since these com-

ponents are independent from each other, their composition is specified by inter-
leaving.

Nets(n) =

 o

id:{1..n-1}

Net(id,id+1)

9Net(n,n)

14 S. Colin, A. Lanoix, O. Kouchnarenko, J. Souquières

– Finally, the platoon is defined by the parallel composition of all the Cristals and all
the Nets, synchronised on {| comIn, comOut|}.

Platoon(n) = Cristals(n)
n

{|comIn,
comOut|}

Nets(n)

Verification. As each Cristal and each Net have been proved divergence-free, the pla-
toon is divergence-free by applying Theorem 2. To achieve consistency checking, the
parallel composition of the CSP parts of each Cristal and communication medium is
shown deadlock-free, thanks to FDR2. Consequently, by Theorem 4 the platoon is
deadlock-free too. This verification validates the safety property expressed at the be-
ginning of Sect. 5 saying that the communications (expressed through the Nets compo-
nents) should not deadlock.

6 Conclusion

The development of a new type of urban vehicle and the needs for its certification ne-
cessitate their formal specification and validation. We propose in this paper a formal
CSP‖B specification development of an autonomous vehicle components, and an archi-
tecture for assembling vehicles in a convoy to follow the path of the leader vehicle in
a row. Applying known results on the composition and the verification in the CSP‖B
framework and using existing tools, the FDR2 model-checking and the B4Free proof
tools, allow us to ensure the consistency of the whole multi-agent system, in a compo-
sitional manner.

Having formal CSP‖B specifications help – by establishing refinement relations –
to prevent incompatibility among various implementations. Moreover, writing formal
specifications help in designing a way to manage the multi-level assembly.

This work points out the main drawback of the CSP‖B approach: at the interface
between the two models, CLIs and augmented B machines corresponding to CSP con-
trollers are not automatically generated. But this task requires a high expertise level. In
our opinion, the user should be able to conduct all the verification steps automatically.
Automation of these verification steps could be a direction for future work.

On the case study side, to go further, we are currently studying new properties such
as the non-collision, the non-unhooking and the non-oscillation: which ones are ex-
pressible with CSP‖B, which ones are tractable and verifiable? This particular perspec-
tive is related to a similar work by the authors of CSP‖B who dealt with another kind of
multi-agent system in [14]. So far our use of CSP‖B for the platooning model reaches
similar conclusions. This nonetheless begs the question of which impact the expression
of more complex emerging properties does have on the model.

Further model development requires checking other refinement relations. It also in-
cludes evolutions in order to study what happens when a Cristal joins or leaves the
platoon, and which communication protocols must be obeyed to do so in a safe man-
ner. We also plan to take into account the lateral control and/or perturbations such as
pedestrians or other vehicles.

Validating a Platoon of Cristal Vehicles 15

Acknowledgement. We would like to thank Olivier Simonin, Alexis Scheuer and
François Charpillet from the LORIA/MAIA team for common efforts and fruitful dis-
cussions in the context of the TACOS and the CRISTAL projects.

References

1. Schneider, S.A., Treharne, H.E.: CSP theorems for communicating B machines. Formal
Aspects of Computing, Special issue of IFM’04 (2005)

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
3. Abrial, J.R.: The B Book. Cambridge University Press (1996)
4. Simonin, O., Lanoix, A., Colin, S., Scheuer, A., Charpillet, F.: Generic Expression in B

of the Influence/Reaction Model: Specifying and Verifying Situated Multi-Agent Systems.
INRIA Research Report 6304, INRIA (2007)

5. Bontron, P., Potet, M.L.: Automatic construction of validated B components from structured
developments. In: Proc. First Int. Conf. ZB’2000, York, Great Britain. Volume 1878 of
LNCS., Springer Verlag (2000) 127–147

6. Abrial, J.R.: Discrete system models. Version 1.1 (2002)
7. Attiogbé, J.: Communicating B abstract systems. Research Report RR-IRIN 02.08 (2002)

updated july 2003.
8. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Synchronized parallel composition of event

systems in B. In Bert, D., Bowen, J.P., Henson, M.C., Robinson, K., eds.: Formal speci-
fication and development in Z and B (ZB’2002). Volume 2272 of LNCS., Springer-Verlag
(2002) 436–457

9. Daviet, P., Parent, M.: Longitudinal and lateral servoing of vehicles in a platoon. In: Pro-
ceeding of the IEEE Intelligent Vehicles Symposium. (1996) 41–46

10. Ferber, J., Muller, J.P.: Influences and reaction : a model of situated multiagent systems. In:
2nd Int. Conf. on Multi-agent Systems. (1996) 72–79

11. Treharne, H., Schneider, S.: Using a process algebra to control B OPERATIONS. In: 1st
International Conference on Integrated Formal Methods (IFM’99), York, Springer Verlag
(1999) 437–457

12. Schneider, S., Treharne, H.: Communicating B machines. In Bert, D., Bowen, J.P., Henson,
M.C., Robinson, K., eds.: Formal specification and development in Z and B (ZB 2002).
Volume 2272 of LNCS., Springer Verlag (2002) 416–435

13. Evans, N., Treharne, H.E.: Investigating a file transfer protocol using CSP and B. Software
and Systems Modelling Journal 4 (2005) 258–276

14. Schneider, S., Cavalcanti, A., Treharne, H., Woodcock, J.: A layered behavioural model of
platelets. In: 11th IEEE International Conference on Engieerging of Complex Computer
Systems, ICECCS. (2006)

15. Roscoe, A.W.: The theory and Practice of Concurrency. Prentice Hall (1997)
16. Formal Systems (Europe) Ltd.: Failures-Divergence Refinement – FDR2 user manual. For-

mal systems (europe) ltd. edn. (1997) Available at http://www.formal.demon.co.uk/
fdr2manual/index.html.

