SoSyM manuscript No.
(will be inserted by the editor)

Design and Implementation of a Cooperative
Framework for B based Software Development:
BRILLANT

Dorian Petit!, Samuel Colir?, Georges Marian@, Vincent Poirriez!, Jérome
Rochetea, Rafaél Marcanc? *

LAMIH/ROI, UMR CNRS 8530

1 Université de Valenciennes et du Hainaut Cambrésis
Le Mont Houy F-59313 Valenciennes Cedex 9, France
e-mail:Fi r st name. Last name@ni v-val enci ennes. fr

INRETS-ESTAS National Institute for Transport and Safegs&arch
2 20 rue Elisée Reclus - B.P. 317 F-59666 Villeneuve d’AscqnEe
e-mail:Fi r st name. Last name@nrets. fr

DEDALE Team

3 LORIA - Campus Scientifique
BP 239 - 54506 Vandoeuvre-leés-Nancy Cedex
e-mail:Fi r st name. Last name@oria. fr

Received: date / Revised version: date

Abstract The need for the B method first appeared in industry, and akvem-
mercial tools have been developed to support this formalldowever, few of
these tools allow reasoning related to the formalism itsetn its possible exten-
sions. This article presents an open-source platform,avititus on the platform’s
core component, the BCaml project. The tools presenteddnengsed to show how
very different approaches can be brought together arouedtsat design to form
a consistent toolbox that can be used to generate safe codiéo alevelop safe
systems, from their specifications to their validation.

Key words B method, tool support, UML modelling, XML, proof tools, ced
generation

* This research has been partially funded by Science and d&ahynfor Safety in Trans-
portation, the European Community, the Regional DelegdtioResearch and Technology,
the Delegate Minister for Higher Education and Resear@hNbrd/Pas-de-Calais Region
and the National Center for Scientific Research : the autgmatefully acknowledge the
support of these institutions

2 Dorian Petit et al.

1 Introduction

During the last decade of the previous millennium, theoattiesearch produced
the B method, which is based on the same fundamentals as ZftilyDM [39].
This method reconciles the pragmatic constraints of indistevelopment of crit-
ical software with the strict theoretical requirementsarént to mathematical for-
malism. The B method is one of the rare successful formal oustlused in in-
dustry, and it supports multiple paradigms: Substitutiagsneans for describing
dynamic behaviour naturallfformulasin a simple yet efficient logical framework
(set theory)Composition mechanisrtizat simplify development; anidefinements
that provide a safe and efficient way to obtain secure compotie from abstract
specifications.

The B method was used in the METEOR project [5], as well asss lgell-
known development projects [13,18] and even non-critiealetbpment projects
[52]. The software industry adopted B largely because oftralability of soft-
ware tools supporting all phases of the B development psisesnantics verifica-
tion, refinement, proving, automatic code generation)ikénhost software tools,
B support tools resulted from prototypes developed by itrgwather than by the
academic community. In fact, from 1993 to 1999, the “AtelB¥rdevelopment
project was funded by the “Convention B”, which was a collaive effort of the
RATP (Parisian Autonomous Transportation Company), SNGE French Na-
tional Railway Society), INRETS (the National Institute firansport and Safety
Research) and Matra Transport (now Siemens Transport8§istems), among
others.

A computer scientist in the field of formal methods will peveecertain para-
doxes in the implementation of the B method. For instaneeBtmethod uses pro-
gramming languages, such as B kernel, that are not well dented or specified
and that are not particularly well-suited to B’s high levélabstraction. In addi-
tion, some have observed that the B module language is athgrlex and hard to
understand. G. N. Watson [54] goes as far as to call the pratibn of constructs
in the B module system, and the rules associated with themewbatdaunting
Certainly, the semantics of the B module system has beefestbg several re-
search teams. Beet al. [7] have developed a component algebra to express the
INCLUDES and USES clauses. Pogdtal. [45] have studied the IMPORTS and
SEES links, demonstrating that, in B, it is possible to bailderroneous project
that appears to be correct; they have also proposed criteriiged from the depen-
dency graph, which must be verified to eliminate erroneoakitctures. Dimi-
trakoset al. [19] have studied the various composition clauses, fogusimthe
conditions that must be verified to preserve the various amapt properties. Of
course, it can be argued that B modularity is complex becthese are various
kinds of restrictions to ensure correctness. In any casdntierent complexity of
the B method makes it important to provide a synthetic wayrntdeustand these
modular constructs (i.e., a way with just a few rules rathantn extensas done
by Abrial [2]).

Though these apparent paradoxes can be explained by thstriatiorigins
of the method, the fact remains that the industrial toolsentty available for B

BRILLANT 3

are often inappropriate for scientific research, and thuaatgrovide effective
support for efforts to extend the use of the B method.

To remedy this problem, we have proposed BRILLANT [12] framework,
showing the feasibility of a safe software developmentesysthat ranges from
semi-formal specification (UML) to contract-equipped cgeaeration(i.e., equip-
ped with assertions from the abstract model). This framkwwoovides a central
core into which various components can be plugged, incydicentral compo-
nent, a UML plug-in, a proof plug-out, and a code generatogiut.

This paper is a revised and enhanced version of the artielgepted in [15].
Section 2 gives an overview of the BRILLANT effort and the Blgart of the
platform. Section 3 briefly introduces the case study usetliustrate our ap-
proach, and section 4 presents the central compon&RAfLANT, which allows
the components of a B project to be manipulated. The pardiyroachines is
examined in section 4.1.1, highlighting the central roleXdL as an exchange
format. Section 5 presents the proof plug-out used to viiBeproof obligations,
and section 6 describes a code generator plug-out that #ggaveral target lan-
guages and is able to embed contracts into the code. Sedtiescribes the UML
plug-in used to translate UML projects into B so as to vakdhem, as described
by Marcano & Levy [33] and Laleau & Polack [28]. Finally, siect 8 presents our
conclusions based on the results of our experiments witimpéementation and
use of theBRILLANTplatform.

2 Overview of the BRILLANT platform

Figure 1 shows the BRILLANT platform’s current organizawid his platform is
the result of several years of academic research and deweltpby a few Mas-
ters degree and PhD students. The original impetus for geareh was the lack
of open tools allowing to manipulate and experiment with Bhenethod. Thus,
our first project was to implement a parser for the B languagsdribed in sec-
tion 4.1). We immediately realized that academia, or attlagsart of it, was just
waiting for such an open tool since soon after its first redefgo studies [8,27]
implemented our tool. Encouraged by this interest, we aegttd continue by ad-
dressing the generation code process. Our first task wasdt@ fimay to take the
modularity of the B language into account, which we accosfy@d in two direc-
tions by defining the flattening(see section 4.2.1) and BHidction section 4.2.2)
components.

Since the B method is, at its center, proof related, a prolifations generator
(the component POG described in 4.3) was also needed. Abdiris in time, the
only meta-language used in our platform development wags@ibg Caml [29].
However, it was obvious to us that a cooperative developmiatiorm could not
remain language dependent, which led us to define and use andéstription
for B in order to facilitate connections with the tools dexgbed by others. This
has already been done for connections with the proof assiBtzox (see section
5), and the XML description for ABTools [9,10] (on the left fifure 1) created
by the lab, Heudyasic, is under development in order to gieogidouble chain to
certify code.

4 Dorian Petit et al.

Some internal components were also developed to perforeraes transla-
tions (from or to Tex, html, ocaml, eiffel, ...). Although weere initially inter-
ested in generating code from B specifications, other rekees were working
on how to pass from semi-formal UML specifications to formadcifications.
With these researchers, we were able to develop a plug-igries to connect
their tool to the BRILLANT B abstract syntax tree (see satti). BRILLANT
now provides a skeleton for a full development chain, fronpBcifications, even
from UML ones, to code. Some extensions can be simply pluggaadd explored.
In the rest of this article, we will highlight some featurdgtee different platform
components and try to share some of the lessons learned daviddoping BRIL-
LANT. The next section introduces the case study that willbed as an example
throughout the article.

3 Case study

by Jansen and Schnieder [24] (see figure 2), who use knowktniyet the rail-

way domain as a basis for the formal specifications. The probs to specify a
radio-based Railway Level-Crossing (RLC) applicationaleped for the German
Railways [22] and to adapt it to the French rail system.

This application is distributed over three sub-systemsam-torne control
(TC) system (i.e., an on-board system), a level-crossingrob(LCC) system,
and an operations center (OC) system. The central systehe ilevel-crossing
control system, the two others being cooperating actotsiaéte use of the LCC.

The level crossing is situated on a single-track railwag hha point where the
line crosses a road on the same level. The intersection abttkand the railway
line is considered the danger zone, since train traffic aad n&ffic must not enter
it at the same time. Note that this is the main safety comgtthat must be taken
into account when describing the system.

The traffic lights and barriers at the level crossing are ratled by the LCC
system. This system must be activated when a train appre#ohdevel crossing.
In the activated mode, the LCC performs a sequence of timédnacin order
to safely close the crossing and to ensure that the danger igoinee of road
traffic. First, the yellow traffic lights are switched on, aafier 3 seconds, they
are switched to red. After another 9 seconds, the barriggmlie lower. If the
barriers have been completely lowered within a maximum i@ seconds, the
LCC system signals the safe state of the level crossing,ahosing the train to
pass through the intersection.

The level crossing is opened to road traffic again once thie tras passed
completely through the crossing area, and the LCC systetcts®g back into the
deactivated mode.

Trains approaching the level crossing are detected via@epsoof continuous
self-localisation on the part of the train and radio-basedmunication between
the train and the LCC system. The vehicle sensor situateti@ifat side of the
crossing triggers the re-opening of the barriers and tedidraffic lights to switch

BRILLANT

Joje1ouad suonesiqo Jooid = DOJ

juawdo|aAap Japun

TvS pausper

‘T ‘Tued0o
XL ‘TUnH IxoL

:9po)

X0t 10
saLeIql] o

JUB)SISSE JOOIJ = XOUJ AT uoRISUUod
Emmuowa 1ISX = ooiumqu) ﬁ ereq e panalyde
suorssardxa pauryap-[= dx :

! Pauyap-II adI UoIIPBUL0D -
()
R e] [TV

SJ[Nsal Jooid
juouodwo))

bxooao

Suruapery
ordung \—\Aqmmﬁm

IosIEg

uoneory100dg aossocsomw uoneory100ds uoneoIy100ds d 3
Wimm padAL TIHg jm pauone] gpadhy < AAI0d p o od
wnéotﬁ 1

101eIdU93
9po)

Fig. 1 The overall organization dRILLANT

6 Dorian Petit et al.

Road

Sensor Train o Sensor

I \\H{

-\

Barriers

Red lights

Fig. 2 The level crossing problem

off. During the activated mode, the LCC system can be in ont@following
substates (Fig.3): yellow light showing; barrier closibgyrier closed; or barrier
opening. Note that the time expirations occurring afterlt€ is activated are
denoted by the events meCut _1 (3 seconds later) and meQut _2 (9 seconds
later).

(Activated h

I
trainDetectionEntry

/ yellowLightOn() timeOut_1 / redLightOn()
. ™~ Yellow Red
Deactivated Lighton LightOn

deactivate timeOut_2

/ closeBarrier()

trainDetectionRear

/openBar?)/
Opening
Barrier

[bSensor.status=Opened]
/ setMode(Unsafe

Closed

[bSensor.status=Closed]
| setMode(Safe)

Closing
< Barrier

timeOut_3

\

Fig. 3 State diagram of the LCC system

We will use this case study to illustrate our approach thhoug the paper,
except in section 6 in which we will use a bounded stack exartipt will be
more convenient for code generation.

4 The BCaml Kernel

In this section, we describe the three component pafafim! a parser (with an
XML output library to connecBCamlwith the outside world), libraries to handle
the modularity of B projects, and a proof obligation generat

BRILLANT 7

4.1 BCaml input and output

The kernel of theBCamlplatform is made up of the first bricks that were devel-
oped when the platform was created. These bricks specifgdherete grammar
(section 4.1.1) that defines the B language and the absymatzbs(section 4.1.2)
that defines the type used to manipulate the specificatidris nfay seem obvious,
but it is nonetheless important because it makes collaioratth other develop-
ers possible. One of these collaborative projects led tdd¢velopment of another
brick in theBCamlkernel, called théBtyper This brick is not described in this
paper, but more details can be found in Bodeveix & Filali [8].

4.1.1 A concrete grammar for B

Several B grammars have been introduced over the yearsngdrim a vari-
ety of sourcesClearsy(prev. Sterig), which corresponds to the grammar used in
Atelier B, B-Core which corresponds to the grammar use8ifoolkit and Mari-
ano’s PhD dissertation [36], based on BxCore grammarwhich was introduced
to do metrics on B specifications.

In order to build a tool that would be as useful as possiblengerled to define
a grammar that would take into account the criticisms of tteergnars presented
above. OuBCamlchoices had to respect the following constraints:

— They had to be as compatible as possible with the machinésdnabe cor-
rectly parsed by the commercial tools mentioned above Awlier B, B-
Toolkit),

— they had to comply with the standatex and Yacctools that allowLALR
grammars to be defined, and

— they had to cause as few conflicts as possible.

We chose OCaml [29] as a support tool for our B developmentéweral
reasons. Not only does it allow symbolic notations to be hahéasily, but in
addition, it also implements efficiently and comes bundléith wools that allow
the parsing oLALR grammars. Using these tools, we defined the B language in
LALR

4.1.2 Abstract syntax and XML syntax—two isomorphic fosmat

We used our definition of abstract syntax to directly infedilL representa-
tion for B formal specifications. (Due to lack of space, tHistaact syntax is not
described here.) This XML encoding is called "B/XML" and fsred in an XML
DTD file. Such abstract syntax s, as could be expected, ot than concrete
syntax, and contains elements that facilitate the handifrthe syntax structure.
For instance, thésubstitutiofpredicateand [variable.instanciatiofsubstitution
constructions appear in this abstract syntax. The firsttoaetton corresponds to
the form of a formula prior to a calculation of its weakestqmedition. The second
construction appears, for instance, when the parametdrsgarations have to be
instanciated. The existence of these constructions inlibact syntax mean that

8 Dorian Petit et al.

the structure can be manipulated to bring it closer to thechiag mathematical
definitions given in the B-Book [2].

We chose XML as our pivot format because of its flexibility dtscease-of-use
with third-party tools. Using it makes our tools as indepemtcbf one another as
possible, allowing a researcher to use our parser, but seeredee’s proof tool, for
example. This flexibility is insured by the following aspsct

— XSL style sheets can be used to formulate simple recursdagrtrents of the
XML structure, mostly transformations into other struemiformats (e.g.ALEX,
HTML, or PhoX, as mentioned in section 4.3.3); and

— other programming languages can be easily used for morelesmanipula-
tions because most of the time these other languages art® abdel XML data.
This means that researchers can use their preferred progngnianguage, as
long as it has libraries for reading an XML format.

4.1.3 HowBCamlexploits the Abstract Syntax Tree (AST)

BCamltakes advantage of both of the features described aboveXWhe
approach extends the platform’s plug-in/plug-out abitjteatly, while the use of
a well-defined, efficient meta-language as the core impléatien language leads
to a formal standard definition of the B grammar and allowspito®ision of more
efficient components, easily understandable by othersnidie drawback of this
choice of formats is the difficulty of making both formats &otogether. When
designing a component interface to be plugged in, one riguideline is to use
the core implementation language if high efficiency is reegliin order to avoid
a translation step (which is the choice made forBiigper thePOGand the AST
manipulation tools, for example), and to rely on the XML eanbe format in all
other cases (which is the alternative chosen for B/PhoX).

4.2 B modularity related AST processing

Two examples of the complex AST manipulations availablé@BRILLANTplat-
form are presented in the following sub-sections:

Flattening, which can be seen as a way of expanding the abstrhematical
code of a machine into a concrete code through its refinenaentsncluded
machines;

Modularisation, which involves using a well-grounded miadisystem that pro-
duces a modular language from a flat language and a desaorgdtibe desired
modularity.

4.2.1 The flattening algorithm

BRILLANT 9

B specifications are flattened by eliminating the refinemeant @mposition
links. The flattening algorithm aims to build a single B compnt, starting with
a set of B components (a B "model") and grouping all the ($etBdnformation
extracted from the various specifications grouped into onaél text.

The resulting component is the "equivalent” of the initiaael from the point
of view of automatic code generation.

This notion of flattening exists implicitly in the B-Book [2Z[hough Potet and
Rouzaud used the term "flattening" in their work [46], it washBia [6] who spec-
ified the algorithm entirely, and it's her specification theg used in our tool. The
principle of the algorithm is to connect the specificatioonfrthe leaves (where
only thel MPORTS andREFI NES links are taken into account) to the root machine of
the project.

ImplementationThe flattening tool was the first tool implemented after the
BCamlkernel was designed (section 4). This implementation wiasitad to "eval-
uate" the kernel's usability and to add those tools/lilemithat would be useful
for manipulating B specifications to the platform. In ordefrhplement the tool,
two things had to be done. First, the specification dependgraph had to be
equipped to navigate through the specifications in ordewitn the successive
flattened components. To accomplish this, we developedaryilcalled BGraph,
which implements the dependency graph type and the furctieaded to manip-
ulate that graph. Second, all the conditions that allow @&Btcomponents to be
flattened had to be verified.

4.2.2 The B-HLL module system

Overview The Harper-Lillibridge-Leroy module system (HLL) preseditn Leroy
[30] formalizes the Standard ML-like modules. The HLL systgrovides a means
for adding a module language to a module-less core langUdge system also
permits a formal semantic to be given to an existing modutguage, as is the
case for the ML modules. Moreover, this powerful semantihie to implement
the module language with relative simplicity.

Once the HLL module system has been instantiated, it is plesg define
structures (i.e., list of values, types, modules or sub-utexs) and functors (module-
to-module functions) in the obtained modular language. Aeneomplete descrip-
tion of our work on B-HLL can be found in our article publishiacd2004 [43].

Instantiation Figure 4 sums up our use of the HLL system. As shown in the mid-
dle level in figure, the HLL module system includes three fore These functors
are given modules defining the abstract grammar and thedigpeking rules (up-
per level of the figure) and in turn produce several modulewdt level of the
figure) that deal with the modularity of the language.

Our efforts to instantiate the HLL module system were didid#o two parts,
which are shown on the upper level of Figure 4. The first paulired defining the
abstract language of the B core language under study, bagbe abstract syntax
defined during the development of tB€amlkernel. From this abstract syntax,
we removed the part of the syntax dedicated to the modularityuage, and then

10 Dorian Petit et al.

we developed a mapping function from tB€amlkernel abstract syntax to our
new abstract syntax.
User-defined

Core language Core language
abstract grammar type check
modules
Mod_@ Env Mod_Typing
HLL

system
is required by

Fig. 4 Using the HLL module system

Modules produced
by the HLL system

The second part of the instantiation involved defining theetghecker. The
types and the type-checking algorithm we used were adapbed the work of
Bodeveix and Filali [8]. We added some type-checking rubessdpress the visibil-
ity rules described in the B-Book [2], and we also defined tgpecking rules that
take into account B language particularities, such as the-ka&ling principle and
the prohibition of calling a given operation in the compon&here that operation
is defined. (More details about this can be found in [43,40]).

The modules produced by the HLL system are:

Amod: the module for modularity functions, indicating wiatds of modules are
available;

Aenv: the module for environment handling, indicating haformation can be
retrieved from referenced modules;

AModTyping: the module for modular typechecking, indicgthow types can be
inferred in a modular context.

By using the HLL system, it is possible to build a modular laage for B al-
most automatically, without knowing much about the intésrdithe HLL system.

4.2.3 Code generation feedback

Although implementing the flattening algorithm validatée talready devel-
oped bricks and constituted our first complete code prodaocthain, using a pub-
lished formally-defined system like the HLL module systemnttss core of the
code generation process had an unexpected benefit in thetfied the notion of
modularity in the B language. Though the B developers do retrio know the
details of how modularity is implemented, they do need tovktiwat the genera-
tion tool complies with all the visibility rules specified the B-Book. This tool

BRILLANT 11

allows structured code to be generated in components eegiipjph contracts (see
section 6).

4.3 Generating proof obligations

In this section, we first describe the method used to impletherexisting calculus
for the weakest precondition. Then, we show how this cakglan be used to
generate the proof obligations of a B project. Last, we prethe various options
available for exporting these proof obligations to othenfats and other tools.

4.3.1 Generalized Substitution Language (GSL)

In order to generate proof obligations for B machines, wetrhasable to cal-
culate the weakest preconditions of the substitutions. tutahell, the weakest
precondition calculus allows the minimal state for a giveagram, orsubstitu-
tion, to be calculated in order to verify a given predicatepostconditionHence,
when we use “calculated” or “uncalculated” here, we refah®state of a weak-
est precondition calculation. A proof obligation (PO) isccdated if all the weak-
est precondition calculations and all the variables ingtdions have taken place.
Thus, a calculated PO looks like a regular predicate, whilerecalculated PO still
contains the substitutions expressed in a B component.

We chose to follow the approach defined in the B-Book [2]: chdg B substi-
tutions to their smallest syntactic and semantic set engeralized substitutions).
In the following paragraphs, we ussSLto denote both the syntactic set and the
substitutions that compose it. Following the B-Book [2,B\8e define theGSL
in BCamlas an abstract data type, with the following notable exoegti

— The assignment is defined as a multiple substitution; iteseas a basic con-
struct once the parallel substitutions have been reduoédhas can be viewed
as an optimisation.

— The repetition substitution™ is used to reason about the semantics of the
while substitutiorand to propose a sufficient predicate [2, E.7] that could be
used instead of the necessary and sufficient predicate.

— The instanciation[yariable:= expressiofsubstitution of a substitution vari-
able (the parameters of an operation, for instance) is extinefore transform-
ing the substitution. (This idea is not documented pregisglAbrial [2], and
thus it corresponds to an extrapolation on our part.)

The first and the third exception are rather straightforwhaud the second re-
guires a more detailed explanation. The real weakest pditiom can be only
obtained from a fixpoint application over thispetition substitutionThis fixpoint
can not be calculated in general by programming it. Thubpalgh the repetition
GSL appears in the B-Book, it never appears in the actualitzdions of the proof
obligations, so we chose not to include it. Nonethelessylshihe need arise, it
could be introduced, because its semantics have been defieedely.

With the help of the abstract data type, proof obligations ba generated
according to the rules described in the B-Book [2, appendliX Be corresponding

12 Dorian Petit et al.

BCamlcode was written with readability in mind, making it easy tatoh the code
with the rule from which it is derived.

4.3.2 Proof Obligation Generation

The main steps for generating proof obligations from a potojan be divided
into precise steps. These steps are described in more lolet@i:

Parsing First, the machine and all the machines it depends on aregafe
improve efficiency, we decided to directly use 8€amlkernel libraries directly
for parsing rather than reading the XML files produced by taeser.

Generation of formulas The for-
mula generation step is based on the

(LCC € Py (2) B-Book [2, appendix F], resulting in
ASTATE € Py (Z) o o proof obligations with the following
A\ STATE = {Deactivated,ShowingYlight,ShowingRlight, L. .
ClosingB,OpeningB,ClosedB,Failure} form: [|n5tanC|atl0ﬂHyp0theS|Sé
A vollow.state(yellowLight(ob) = 0n) [substitutionGoal
= ' g g = This generation method allows
[state(obi) := ShowingRlight more handling flexibility later on,
|| Yellow.switchOff(yellowLight(obj)) . .
|| Red.switchOn(redLight(obj)) for instance when debugging the
] e © Loc proof obligation generator, or when
(Mii_gamer € lec — barrier showing students how proof obli-
A\;-b, gations are generated, or when the
" (OOJ{,,» clec proof tool applies the substitution to
" Egi;zzﬂ?ﬁ::?{é%b;))) B gﬁ)eszzd the goal. Figure 5 shows an example
N - = of an uncalculated proof obligation,
mode(obj) = Unsafe derived from the B project presented
)) in section 7.

Fig. 5 Uncalculated proof obligation for the Optimizations Several additional
timeOut_1 showRlight operation optimisations, or processing proce-
dures, can be applied to the gener-

ated formulas. For example, formu-

las can be calculated, resulting in
predicates that contain no substitutions. It is also pdessibsplit the goal, by split-
ting the formula into as many formulas as there are membetseafonjunction in
the goal:

(H:>G]_/\/\Gn)’\ﬁ(HéGl)vv(HéGn)

Other possible optimizations that were not implementetlioesremoving for-
mulas when the goal is trivially true or appears in the hype#s, or changing the
form of the formula to adapt it to a precise theorem provertday, it is some-
times easier to apply such transformations to the abstyatas tree than to XML
files using stylesheets. We did not implement these opttinisabecause we do

BRILLANT 13

not believe that semantic interpretation is the provincéhef PO generator, but
rather of the prover, despite the fact that this semanterjmetation can be easily
related to the abstract syntax (e.g., like a goal appeanitigel hypotheses).

Final files and trace information Once the formulas have been generated, some
trace information is embedded into the resulting file. Traxfermation can be
found in the absolute name of the file, which reflects the kihproof obligation
that is in the file, and the machine from which it is generaiéds trace informa-
tion can be used later to find problematic parts of a B profeabi corresponding
proof cannot be achieved. The XML information in the file @ns not only the
predicate itself, but also a root tag named (for obviousmes®r oof bl i gat i on.

In addition, the file contains a tag that includes all the fragables of the formula
because some theorem provers require that all variablesdreb This tag helps
the stylesheet to generate a file for such theorem provers easily.

4.3.3 Exporting to other tools

Once the proof obligations in the XML format are available XSL stylesheets
allow them to be exported to other tools. For instance, tlo@foobligations can
be converted intoAlpXfiles (figure 5 is an example of the results obtained); into
text files, which are easily read by humans; into HTML filesjahhimprove the
readability of the formulas; or into a format suitable forrayer, in order to verify
the proof obligations.

Figure 6 in section 5.1 presents the result of an XSL styleishgplication to
the proof obligation shown in figure 5. In the next step, treotlem prover is fed
the generated proof obligations file (see section 5). Allhefse steps (including
replacing the conjunctions in the hypotheses with impiiet) are done via the
XSL stylesheet, demonstrating thd hocsuitability of this technology designed
for simple treatments involving recursivity.

More complex transformations might be doable with stylesfiebut it would
run the risk of becoming uselessly wordy and, more impolgaess maintainable.
For this reason, we advise using stylesheets only for @#insk that preserve the
overall structure.

5 From B proof obligations to correctness

BCamlprovides the first two important types of B tools, presentedlirial’'s B#
[3, section 4]. The first includes the lexer, parser and tyjer second, the proof
obligation generator. The third and last important B toathis automatic, inter-
active prover. We chose not to develop such a tool Bi@amlfor a pragmatic
reason: building a B prover according to our specificatiafk®$ much more time
than developing dedicated libraries for an already exigpirover. Instead, we built
a replaceable add-on. We included the PhoX proof checkébj@eause 1) it can
be extended to the B mathematical foundations; 2) its GRintie permits distri-
bution along withBCam| 3) its developers were willing to work closely with us;
and 4) its intuitive syntax minimises library developmeénte.

14

Dorian Petit et al.

Our contributions consist of libraries dedicated to sedthiéor the PhoX proof
assistant and the necessary extensions to make the praskgutomatable. These

extensions include:

— Atime-out process controllerThe PhoX proof assistant is interactive but can
be used on the command-line to “compile” (i.e., replay) psmipts. We de-
cided to add time-out limits in order to identify difficult @ofs more quickly
so they can be handled by a human.

— XSL stylesheetd hese stylesheets are used for translating B proof obdigati
saved as XML files, to B/PhoX proof obligations.

— A GNU Make script These scripts re used to handle the whole chain from B
proof obligations to proved formulas.

The result is a plugout for B projects, defined on top of theXPpmof assistant,
for automatically and interactively proving B proof obltgms.

5.1 Thebgop2phoxXSL style sheet

add_path "/usr/share/brillant /bphox/".

Import Blib.

flag auto_Ivl 2.

flag auto_type true.

theorem op

NActivated, BARRIER,Closed,ClosedB,
Closing,ClosingB,Deactivated,DownSpeed,

Yellow. IState, Yellow. light (
(LCCin (partl Z)) —>
(STATE in (partl Z)) —>

(('Yellow. IState app (yellowLight app (obj))) = On)
—_> (
Nobj ((
((obj in lcc) &
((state <+ \o (o = obj,ShowingRlight) app (obj))
in Activated)) &
((bStatus app (Icc_sensor app (obj))) = Opened)
—>
((mode app (obj)) = Unsafe))))

Try intros
save.

5, auto.

Fig. 6 One of the exploded proof obli-
gations fortimeOut_1_showRlight, con-
verted to B/Phox

During the translation step, our XSL
bgop2phox stylesheet is applied to
the B/XML proof obligations using a
XSLT processor. The XSL transforma-
tion schema allows recursive mapping.
Thus, our translation is also defined re-
cursively. A first-order languagela Bis
composed of various symbols for func-
tions, relations, connectors and quanti-
fiers. Figure 6 is the output of the XSL
stylesheet applied to the formula in fig-
ure 5, after it was calculated and saved
in an XML file.

A high-order languageéx la PhoX
is a simply-typed lambda calculus with
some typed constants. Our translation is
based on associating every first-order B
symbolSwith a B/PhoX expressio8s,
such that its extension to the first-order
terms formulae is simply defined by an
inductive commutation. We showed [50]
that under reasonable assumptions (ba-
sic constants and functions are similar
up to the' translation) proofs made with

B/PhoX are equivalent to B proofs. As a consequence, use@HtoX system of
simple types makes our translation sound. Moreover, evenyfreeness rule and
every substitution rule can be easily obtained throughtheder properties.

BRILLANT 15

5.2 Theblib PhoX library

The PhoX library for B reflects the first three chapters of thBddk. The con-
tent of the library is outlined briefly here because the pseder embedding B
into PhoX is based on it. (More details are available in Roeduget al. [50]). In
fact, the library is a collection of successive libraries fioedicate calculus with
equality, the boolean domain, cartesian products, setatqrs; binary relations,
functions, arithmetic theory and finite sequencing.

5.3 The B/PhoX proof process

A successful proof for a B project is built using a fixed-pginicess involving the

time-out controller. The whole set of generated proof ddilmns is run through a
first session of the prover, with proofs that take longer taaarbitrary value being
forcibly stopped via the time-out controller. A second s&s$s then run, but only

for those proof obligations that could not be proved, withr@ager time-out value.

All subsequent sessions follow the same logic, each timeasing the time-out
value, until all proof obligations have been proved or uthil engineer decides to
stop everything and to prove the problematic formulas adtvely. There is one

drawback to this method: because PhoX is used as a "black thexstate of the

ongoing proof is not saved at that moment it is stopped; thesiext session will

have to replay the proof from the beginning.

Table 1 shows the result of a proof session for the famoudéBdB project.
This table shows that all the reasonably easy proofs aréhéidisvithin a small
time-out value. The results are similar to the results fer shme B project us-
ing the Atelier B tool, which demonstrates the viability afrapproach using an
interactive prover for automated proving.

Time-out 1s. 5s. 60s.
Generated proof obligations 2295
Successful 1823 1955 1971
Failed 0 0 0
Stopped 462 340 324
Proof Rate 79% 85% 85%

Table 1 Proof results for the Boiler

6 From B specifications to code

The generation process for producing flat code is illustrateFigure 7 and the
process for producing component-oriented code is illtstkan Figure 8. (More
details on our approach to generating code can be found émerefes [41] and
[42].) To generate flat code, the specifications have to bgeplaiannotated with

16 Dorian Petit et al.

Fig. 7 The code generation process to obtain flat code

Flat code

B_to BHLL tool
& BHLL typechecke
Flattened Simple flattening
B-HLL spec tool
XSL Styleshee XSLT processor Compor;eorgéorientedi

Fig. 8 The code generation process to obtain component-orieoel ¢

their types, and then flattened. Code can be easily gendratadhe flat B spec-
ifications by using an XSLT processor and the appropriatestget. To generate
component-oriented code, the specifications must be paasedthen translated
into BHLL specifications; these, in turn, are annotated with theie typnce the
specifications have been typed, they are run through theop#re flattening al-
gorithm dedicated to eliminating refinement links in ordeptoduceBHLL com-
ponents. A stylesheet is then applied to the componentsaitmasned in order to
generate the code. Since the structure of the specificaganaintained, we call
this type of code generation, component-oriented coderggan.

Figure 9 presents a B specification of a short and well-knoxample: a
bounded stack. The code presented in figure 10 is generatedtffis specifica-
tion. The package specifications use the generic Ada catistnuo translate the
parameters that specify the size of the stack. Our appraecbde generation al-
lows the properties that are expressed in the specifications put into the code.

Provided that the target language has semantics simildratoof “B imple-
mentable code” (i.e., the substitution of BEMPLEMENTATI ON), then it is theoret-
ically possible to use this target language for code geiveratiowever, as indi-
cated beforehand generating code using XSL stylesheetdyisrmanageable for
translations that maintain the original structure. Fos ti@ason, OCaml and Ada
generations can be done with stylesheets, but it would bdifboult to do in the

BRILLANT

MACHINE stack(stack_size)
CONSTRAINTS

stack_size € N
A stack_size > 1
A stack_size < MAXINT
VARIABLES

the_stack, stack_top
INVARIANT

the_stack € (1..stack_size) — N
A stack_top € N
A stack_top > 0
A stack_top < stack_size
INITIALISATION

the_stack :€ (1..stack_size) — N

|| stack_top :=0
OPERATIONS

push(addval) =
PRE
stack_top < stack_size
A addval € N
THEN
stack_top := stack_top + 1
|| the_stack(stack_top + 1) := addval
END;

END

17

IMPLEMENTATION stack_1(stack_size)
REFINES stack

INITIALISATION
the_stack := (1..stack_size) x {0};
stack_top :=0

OPERATIONS

push(addval) =
BEGIN

stack_top := stack_top + 1;
the_stack(stack_top) := addval
END;

END

Fig. 9 A B specification of a bounded stack

generic
stack_size: natural;
package stack is
function is_empty return
procedure push (addval:
procedure pop;

boolean;
in natural);

function top return natural;
function initialised return boolean;
end stack;

package body stack is
—# invariant stack_top >= 0
—+# and stack_top <= stack_size

the_stack:
stack_top:

array (1..Stack_size) of natural;
0..Stack_size;

procedure push(addval: in
begin
—+# pre stack_top < stack_size

natural) is

stack_top := stack_top + 1;
the_stack(stack_top) := addval;
end push;
begin —initialisation
stack_top := 0
end stack;

Fig. 10 The specification and the body of the bounded stack Ada packag

assembly language, for instance. In that case, more thbrstugctural manipula-
tion would be easier to handle directly in the OCaml code o&BC

7 From UML/OCL models to B specifications

This section introduces an UML plug-in for BCaml that helpssérify the con-
sistency of an UML model by translating it into a B specifioatiand using the

18 Dorian Petit et al.

verification tools validate the B specification, which inrtugnsures the consis-
tency of the UML model. Sections 7.1,7.2 and 7.3 presentsties involved in
specifying a UML model and the associated safety consgalte different steps
are illustrated using the example of the railway level-siog example presented
in section 3. Sections 7.4, 7.5, and 7.6, respectivelyrdeshow to translate UML
diagrams into B, how to enrich the obtained B specificatiath Wyie UML model’'s
OCL constraints, and how to prove the consistency of the UNddehby verifying
the enriched B specification.

7.1 From requirements to UML models

The "elicitation problem" (i.e., the creation of a validtial description of the re-
quired system properties) is essential to ensure the ¢oegzsof the future system.
The consistency of the system depends on the developdity &bbunderstand and
incorporate key safety properties. Therefore, knowledgta® context in which
the system operates plays an important role in elicitingesggequirements. Our
approach to requirement analysis is based on the apprdeshibg Marcanet al.
[34], in which both the static and dynamic properties of th&tem are taken into
account through various UML diagrams.

Describing the entities involved and their invariantslitaties comprehension
of the static properties. Describing the way that systerraawill interact with
each other and the system leads to a full comprehension dfytremic properties
of the future system. The Object Constraint Language (O€U$ed to express all
the properties that cannot be expressed through diagraomnodétion alone (i.e.,
hypotheses and facts related to subsystems, classelyi@sriand associations).
OCL is also used to describe the system safety conditionss, Hystem modeling
can be divided into two steps:

— First, UML sequence diagrams must be defined in order to iiesboth cor-
rect operating scenarios and failure scenarios

— Second, the expected behaviour of the system must be dedcdmpletely as
a set of OCL pre- and post-operational conditions

UML state diagrams will be defined for the combined operatiohthe entire
system in order to describe the overall interaction of treteap with each actor in
its environment.

7.2 UML-based-modelling

In the railway example described in section 3, the centratesy is the level-
crossing control (LCC) system, the two others-a train-barontrol (TC) system
and an operations center (OC) system-being cooperatingsatiat make use of
the LCC. To create a UML model, first, it is necessary to idgritie main enti-

ties that must be modelled to determine possible LCC systéinré conditions.

A primary cause of such failure conditions could be malfionihg sensors or ac-
tuators. Defects leading to failures may be detected in thie physical structures

BRILLANT 19

or in the control systems themselves. In this case study, atimited number
of failures are considered: failures of the yellow or redfizdights (which are
considered separately), the barriers, and the vehicleosemsd the delay or loss
of messages sent through the radio network. For any of tladseds, the follow-
ing objects that interact with the LCC system (Fig.11) araneixed: the lights,
the barriers, the vehicle sensors, the train-borne cosyiiem, and the operations
center.

BarrierSensor Barrier

Controller, TrainDriver
. 1 1 Istate : bSTATE K I ‘*W
status: bSTATE 'sensor close()

etBarrierStatus open]]
1 theBarrief1l OperatjonPanel OnboardPanel
bSensor T
1

. LevelCrossingControl TrainborneControl
Light redLight |Sate : STATE oc oc state : tSTATE
state : LIGHTstate mode : {Safe,Unsafe} applyBreaks()
switchOn() 1 cIoseBarr_ler() . continueRun()
switchOff() yellowLight |openBarrier() N lcc_oc train_oc « |getStateLC()
yellowLightOnt() _|releaseBreaks()
redLightOn() lc train N receiveAck()
trainDetectEntry() X downSpeed()
VehicleSensor |1 trainDetectRear() lc train_|psSpeed()
rear yellowLightOff() 0.1 Icc_train 0..1 |askAck()
sendSignal() redLightOff() standstill()

Fig. 11 RLC system : Class diagram

7.3 Adding OCL constraints

Using a standard formal language for constraint specifina an important step
towards formalizing complex models, particularly in thentaxt of critical safety
systems. The purpose of OCL is to allow the constraintsedltd system objects
to be formally specified, preserving the comprehensibditg readability of the
UML models. OCL facilitates the statement of the properdied the invariants of
the objects, as well as that of the pre/post-conditiondferaperations. OCL also
provides a navigation mechanism that allows attributesratjpns and associa-
tions to be referenced in the context of a class or an objedté&s variable), and
guery operators that permit a set of elements to be selent¥dranodified. Each
OCL expression has a specific type and belongs to a speciftexdoifhe con-
text of an OCL expression determines its scope. Only thdlglements in the
context of the expression can be referenced by means ofataigexpressions.
Safety properties are included in the system invariantgdermto propagate
them from the abstract specification phase to the implertientphase. The main
property of the LCC systemis to prevent both road and rdfi¢rixom entering the
danger zone at the same time; to do so, the control spedificafor the crossing
area and its barrier, as well as any trains that may passghrine level crossing
at any time, must be modelled at a high level of abstractiontltese reasons, the
following OCL invariants are specified for these classeshasvn in Fig.12:

20

Fig.

Dorian Petit et al.

. Req.f there is a train crossing the danger zone then the basiefosed

context CrossingArea inv:
not(self.train->isEmpty()) implies self.barrier.state=Closed

. Req.Ifthe barrier of the crossing area is open, then no train g@gching the

danger zone context Barrier inv:

self.state=Opened implies self.guards.train->isEmpty()

. Req.If the barrier of the crossing area is closed, then a trairrassing the

intersection context PhysicalTrain inv:

self.crosses.barrier=Closed

{not(self.train->isEmpty()) implies
self.barrier.state=Closed

and) o speed : real
self.barrier.sate=Opened implies 0..1| distance : real
self.train->isEmpty()}

train | PhysicalTrain

{self.crosses.barrier.state=Closed} 1

i
i crosses

! 0.1
CrossingArea Barrier 4

{self.state=Opened implies "
self.guards.train->isEmpty()} ‘

1 1

criticalZone : Zone _|state : bSTATE
guards barrier

12 Constraints related to the danger zone

These constraints must hold true for a more detailed desiga decisions have

been made about the actual type of hardware to be used in d@nvaptation. In
this case study, the notion of "train passing through thergetiction" is connected
to the activation of the railway level crossing. In order te@mplish this task, the
front and the rear of the train must somehow be detected. $arasthat the train
can be detected directly through use of abstract vehiclossnThe barrier state is
detected by introducing a barrier sensor. In light of theseimptions, the previous
OCL invariants can be refined by adding the following LCC sgstonstraints for
the class shown in Fig.11:

1.

Req.The red light is switched on whenever the barrier is closed the yellow
light is switched on when the barrier is closing. If both ttedlgw and the red
lights are switched off, then the barrier is open.

context LCC_System inv:

self.theBarrier.state=Closed implies self.redLight.state=On

and self.theBarrier.state=Closing implies self.yellowLight.state=On
and self.yellowLight.state=Off and self.redLight.state=Off

implies self.theBarrier.state=Opened

. Req.If a train is in the danger zone, the level crossing is in aivatdd state

composed of four substates (WaitingAck, Closing, Closqugriing).

context LCC_System inv:
not(self.train->isEmpty()) implies self.state=Activated and

BRILLANT 21

Set(Activated)=Set(WaitingAck->Union(Closing)->Union(Closed)->Union(Opening))

3. Req.Ifthe LCC system is in the activated state while the barsergen, then
the level crossing is in an unsafe mode.

context LCC_System inv:
self.state=Activated and self.bSensor.state=Opened implies self. mode=Unsafe

4. Req.If the registered state of the barrier is closed and the eniggnsor indi-
cates that it is open, then the level crossing is in an unsafemrhis is the
case when the barrier is in the closing state; the LCC remaigafe until the
barrier is completely closed.

context LCC_System inv:
self.bSensor.state=Opened and self.theBarrier.state=Closed) implies self. mode=Unsafe

The operations of the LCC class are specified with OCL prepasticonditions.
OCL is also used in sequence diagrams to complete the prigiomscand invari-
ants related to operations. Although state diagrams are tosderive the initial
specification of each operation (i.e., the description ofagestransition), OCL
constraints are needed to add supplementary informatairctin not be retrieved
from the state diagrams.

Consider the closing of the barrier raised by the evemeQut _1. The precon-
dition of the operatior| oseBarri er ensures that the yellow light is switched on
before sending the closeBarrier order, in addition to enguthat the barrier has
not yet been closed. The postcondition ensures that the gtahe yellow light
is off, the state of the red light is on, and the state of theidais closed. The
operation is specified as follows:

context LCC_System::closeBarrier
pre: self.yellowLight.state=On and self.theBarrier.state=Opened
post: self.yellowLight.state=Off and self.redLight.state=On and
self.theBarrier.state=Closed

7.4 Formalization of classes and state diagrams

Our main goal is to extract an initial B specification (caltbd “abstract” specifi-
cation) from the UML diagrams and to use it to check for indstemcies. To do
S0, an abstract machine is associated to each class. Sebdggine B method is
used to provide details about each component with regaftetbeéhavior of class
operations and the global invariants. At this point, theesysdeveloper must make
several important decisions concerning unspecified ptigseand then introduce
these properties into the UML diagrams using OCL constsaifibe UML dia-
grams are then translated into B, and the resulting B spatiditis used to check
the consistency of all the UML diagrams and OCL constraints.

Consequently, the B specification is not a good illustratiboode generation
because the overall process was designed with consisteackiog in mind rather
than code generation. However, the existence of a tool alleso explore in what

22

MACHINE Barrier

USES BarrierSensor

SETS BARRIER
VARIABLES barrier, bState

Dorian Petit et al.

res «— getBState(obj) =

INVARIANT PTJE’ € barrier
barrier C BARRIER THEN
A bState € barrier — bSTATE res = bState(obj)
INITIALISATION END: T !
barrier ,bState := &, ’
OPERATIONS n L~
obj «— createBarrier =
. N~ PRE
openBarrier(obj) = barrier # BARRIER
PRE
R . THEN
obj € barrier ANY new
?Hb:’f‘ate(om) = Closed WHERE new € BARRIER — barrier
. THEN
bState(obj) := Opened I }
END: barrier := barrier U {new}
' || bState := bState U {new +— Opened}
closeBarrier (obj) = || obj := new
END
PRE END:
obj € barrier !
A bState(obj) = Opened supBarrier(obj) =
THEN PRE
bState(obj) := Closed X .
END: obj C barrier
’ THEN

setBState(obj, newBState) =
PRE

barrier := barrier — obj
|| bState := obj < bState

; . END
obj € barrier
A newBState € bSTATE
THEN END

bState := bState < {obj — newBState}
END;

Fig. 13 Formalization of classes (machine Barrier)

measure code generation is feasible, and what adaptatidhe process need to
be made in order to be able to generate code from UML spedificat

7.4.1 Classes

Consider the clasBarrier and its first B specification, presented in Fig. 13.
Since a class includes both the static and dynamic propestia set of objects,
it seems natural to model it using one abstract machine. &balting abstract
machine Barrier describes the deferred B®RRIER of all the possible instances
of the classBarrier . The set of existing instances is modelled using a variable
barrier constrained to be a subseBaRRIER.

Each attribute (i.ehStatd is represented by a variable (i.e., bState) defined in
theINVARIANT clause as a total function between the set barrier and ibeiassd
type (i.e., bSTATE). Each operation of the machine has atlene parameter
obj representing the object on which the operation is calteghay have a list of
typed arguments args, which will be completed in the latangtation of the state
diagrams and OCL constraints.

7.4.2 Formalization of state diagrams

BRILLANT 23

State diagrams are used to introduce the behavioral (yeardic) properties
of the system into the B specification. The set of all possitdg¢es of a class is
formalized using an abstract set that is defined in the cporeding B machine.
An abstract variable is used to reference the current stdbee@lass objects. This
variable is defined as a total function, whose domain is thefmstances and
whose range is the set of possible states. Each transittarebe two states is for-
malized by a B operation, whose name is that of the incomiegeWhereas the
precondition of the operation is deduced from the transigjoard, the postcondi-
tion describes the transition to the new state. Let us censiigk state diagram of
the LCC_Syst emclass shown in figure 3: the transition from thiewi ng¥l i ght
state to thecl osi ngB state activated by the eveninmeQut _1 is formalized as
shown in Fig.14. Note that we have included some informatiotained from the
OCL definition of the operation closeBarrier, since thismien is activated by
the event i meCQut _1. (The OCL translation is described below.)

When the same event can activate two different transiti@pedding on the
guard condition, then both transitions are formalized leysame operation of the
B machine. The non-deterministic construct®eLECTis used to describe each
transition, as illustrated in Fig.14 for the formalizatiohthe event i neQut _2.
The time constraints (not shown in the example, see referf8t] for details)
are handled in the precondition by checking the value of ekcl@riable defined
in a abstract clock machine. The progression of time is adoé¢lde body of the
operations, by calling the relevant operation of the clo@chine with a value of
time progress. This value can be made indeterministic bygusie “unbounded
choice” construct of B.

MACHINE LCC_System timeOut_2(obj) =
PRE
OPERATIONS obj € lcc

A state(obj) = ClosingB

timeOut_1(obj) = A bState(lcc_barrier (obj)) = Closed
PRE A Red.IState(redLight(obj)) = On
obj € lcc A Yellow.|State (yellowLight(obj)) = Off
A state(obj) = YellowLightOn THEN

A bStatus(lcc_sensor(obj)) = Opened
A bState(lcc_barrier (obj)) = Opened
A Red.IState(redLight(obj)) = Off
A Yellow.IState (yellowLight(obj)) = On
THEN

state (obj) := ClosingB
|| closeBarrier(lcc_barrier (obj))
|| Yellow.switchOff(yellowLight(obj))
| Red.switchOn(redLight(obj))
END;

SELECT bStatus(lcc sensor(obj))=Closed
THEN state(obj):=ClosedB
|| mode(obj):=Safe
WHEN bStatus(lcc_sensor(obj))=Opened
THEN state(obj):=Failure
ELSE skip
END
END;

END

Fig. 14 Formalization of state diagrams

Once the classes and state diagrams have been translateédemrdted into
the initial specification, OCL constraints are used to catgthe B machine in-
variants and operations.

24 Dorian Petit et al.

7.5 Formalization of OCL constraints

In this section, we explain how OCL expressions are traedl&ito B expres-
sions, using the rules defined for the OCL meta-model in MaosaPhD disserta-
tion [26].

The Object Constraint Language has thus far been definedfeemélly using
textual descriptions, a grammar that specifies the conesgettax, and examples
that illustrate the semantics of the expressions. Such septation style is ade-
guate for illustrating OCL concepts, but it is not sufficiémtproviding a rigorous
semantic. This semi-formal nature of the OCL definition, ethoften leads users
to interpret the UML models ambiguously, restricts its useritical safety appli-
cations. This difficulty is increased by the lack of tools goging the analysis of
OCL expressions and the "proof" of complete UML models.

Recent work proposing a precise semantic for OCL has beeredarut by
Richters and Gogolla [48]. In addition, both these authd®] and Jacksort
al. [23] have published research related to tools for verifyildL designs. The
first publication proposes an approach for validating UMLd®ls using simula-
tion, and the second proposes an object model analyzerdbatAiloy, which is
based on Z. Two of the authors of the present paper have asopsly worked
to formalize OCL with B, using a system of translation rulesvieen the abstract
syntaxes of both languages [32].

In the BRILLANT plug-in, two types of OCL constraints are taken into ac-
count. The first type of constraint specifies an invariant ofaas, and the second
type specifies a precondition and/or a postcondition of aratn. In the first
case, translating the OCL constraint consists of combiaimgw predicate with
the invariant of the related B machine, whereas in the secasé, it requires com-
pleting an operation of the machine. The formalization efltlcC system’s OCL
invariant is shown in Fig.15.

MACHINE LCC System

CONSTANTS Activated

PROPERTIES Activated € STATE A Activated={YellowLightOn,ClosingB,OpeningB,ClosedB}
INVARIANT

Yobj.(obj € Icc A bState(lcc_barrier (obj))=Closed = Red.IState(redLight(obj))=0n)
A Yobj.(obj € lcc A bState(lcc_barrier (obj))=Closing = Red.IState(yellowLight(obj))=0n)
A Vobj.(obj € lcc A Yellow.|State (yellowLight(obj))=0ff A Red.|State(redLight(obj))=0Off
= bState(lcc_barrier (obj))=Opened)
A Yobj.(obj € lcc A objdom(lcc_train) = state(obj) € Activated)
A Yobj.(obj € lcc A state(obj)=Activated A bStatus(lcc_sensor(obj))=Opened = mode(obj)=Unsafe)
A Vobj.(obj € lcc A bStatus(lcc_sensor(obj))=Opened A bState(lcc_barrier(obj))=Closed = mode(obj)=Unsafe)

END

Fig. 15 Formalization of OCL invariants

In the same way that OCL predicates enrich the UML model, O@- pnd
post-conditions are used to enrich B machine operatiordgli4, the pre-condition

BRILLANT 25

of the operationi meCut _1 not only requires that the LCC system be inyisél ow
Li ght state (which is generated from the state diagram) but atchle red light
be switched on and the barrier be closed. These three autsttagether consitute
the translation of the OCL predicate:

self.yellowLight.state=On and self.theBarrier.state=Opened.

The post-condition of the operation initially includes wrthe substitution
state(obj): =0 osi ngB that sets the new state of the LCC instance (obj). This
post-condition is completed by translating the OCL postetitton

self.yellowLight.state=Off and self.redLight.state=On and self.theBarrier.state=Closed

into B, which generates the following parallel substitngo

closeBarrier (lcc_barrier(obj))
|| Yellow swtchGf (yellowlight(obj))
|| Red.switchOn (redLight(obj))

Please note that although OCL constraints can be sufficiemdpressing the
behavior of the model, it can be very difficult to extract thehavior in order to
express it in terms of B operations. Thus, state diagrameegessary to provide
the skeleton for the behavior, upon which additional infation can be imported
from the OCL pre- and post-conditions.

7.6 Verification of the entire model

In order to automate the formalization process, we impleatea prototype tool
that derives B specifications from UML/OCL models. The sitérof this tool is
that it does not depend on any UML modelling tool. Insteadois the translation
using XMl files (i.e., files in an XML format describing a UML @ritecture) as
input. As a result, this tool can still be used even if UML mitidg tools change
their Application Programming Interface.

Once the whole B formal specification has been generatedtfretdML/OCL
model, it has to be type-checked and then verified througbaf process. A ded-
icated tool is then used to automatically generate and piteveroof obligations
(POs). The POs guarantee that the B machine’s operatiofigrooto its invariant.
Each operation raises proof obligations related to itsqumedition and substitution
parts. The non-proven POs are used to detect inconsistdretiween the invariant
and the preconditions, as well as to detect the incompleteniea post-condition.

If a proof obligation cannot be proven using the theorem erahen the devel-
oper must review the related OCL invariant or operation a@aé#terthe necessary
modifications to allow the obligation to be proved. Our amiois a one-way ap-
proach: it allows UML/OCL to be translated into B, but not thteer way round.
When the type-checker or the prover finds an error in the 8pation, the user
must first understand the B specification and then searcleib/L/OCL model
to find the error. Please note that it is quite simple for thesttgoer to find the UML
element associated to a B expression because the names@iné/rine same and
each OCL expression is translated into a simple B expressions, in order to
facilitate the task, we have made it possible to create aridtaia concrete links

26 Dorian Petit et al.

between the UML/OCL models and B specifications throughoeidevelopment
process.

8 Discussion, conclusion and perspectives
8.1 Comparison with other works

Several other formal methods also employ the same kind®ts,tand were devel-
oped similarly to use either open-source high-level laggsar formats, or both.
Many of them can be found in the www formal methods’ virtubtéiry [21], along
with links to the formal methods they implement. In addititneely available (but
not open-source) tools exist for the Bmethod: B4Free [4tfiiuted byClearsy
and ProB [47]. The former is a parser, type-checker, prodifjation generator
and prover programmed in the BO language. The latter is ananoir and model-
checker programmed in Prolog, and uses the XML files prodbgetie jBTools
[25] as input.

BRILLANTcan also be compared to projects of a similar nature, that fiav-
lar ambitions and/or designs: Rodin [51] (#8#), Overture [38] (for VDM++) and
the Community Z Tools [17]GZT). These projects share several common points.
For example, they all use XML-based interchange format$tlaey all have simi-
lar architectures, in which the core tools (e.g., parsgpgdheckers, testers/valida-
tors, plug-ins and/or plug-outs) are clearly separatetheSare driven by research
needs BRILLANT, CZT), some by industrial interests (Rodin), and some by both
(Overture).

However, despite their similar architectures, the tootglerlying implementa-
tions are quite different. Rodin and Overture are based®g&tfipse IDE [20] and
thus provide a very consistent development environmenitirgfrthe mandatory
parts of such a framework (e.g., parsing, compiling, grapiterfaces, test suites)
is therefore more scalable and reusable, if not any eaSEFT.and BRILLANT,
on the other hand, are more or less a loosely connected senlsf the first was
developed using Java (their edition of Z specifications enesupported by jEdit),
while most of theBRILLANTtools were developed in OCaml.

BecauseCZT and BRILLANT appear to have more points in common, it is
appropriate to focus this comparison on th&RILLANT was developed before
the others, although the ideas beh@@AT appeared around the same time

The developers oE£ZT have provided information about the design decisions
behind their tools. In the following paragraphs, these slens are analyzed by
comparing them with similar decisions that have been madeeatime or another
during the development &RILLANT. (All citations come from reference [17].)

BCam| BRILLANTs most important tool, uses what@ZT terminology [17]
is called an immutable type, which helBRILLANT to avoid the problems de-
scribed by the developers 6ZT. Initially, these developers implemented a "mu-
table" Abstract Syntax Tree (AST) approach, then moved wnabined approach

1 A sketch of a formal developement platform can be found ianaice [36], ch-2, p-29,
published in 1997. The CZT initiative was launched arounpit&aber 2001

BRILLANT 27

called "a 'Both’ approach”, but finally ended up shifting dually towards an "im-
mutable" approach. This means that, initially, the AST. (ilee type representing
the Z specifications) could be modified during tool execytwimich allowed more
efficient algorithms to be used, but made the sharing of comsubtrees (i.e.,
common pieces of specifications) difficult. In addition,eivthe initial “mutabil-
ity” of the AST, the programmers had to ensure that it did matrge during certain
specific parts of the execution, which required a compratehksowledge of the
overall tools. The 'Both’ approach tried to combine the atages of the mutable
approach and the immutable approach, but only succeededrigsising complex-
ity. CZT has now moved towards the immutable approach, both becaigdess
error-prone and because it makes things simpler for thelol@ee Thus, by using
OCaml,BRILLANTavoided the pitfalls of optimization for the immutable typfe
the AST. This made sense to us for 2 reasons: 1) the literasually advocates
using a static tree to represent abstract data structuré®)dhe OCaml language
actually encourages such an implementation.

When developin®RILLANT, we wanted to make it possible to add B-HLL
to BCamlat some later date, which required insuring identifier upidihe CZT
developers also faced this problem, which arises when atnaabstructure de-
fines binders, either as universal or existential quargifiepredicate calculus, or
as local vs. global variables in programming language<£2i, three common
solutions to this problem were tried: renaming bound vaeslwhen necessary,
which is a traditional solution, but one that makes it “irditdy easy to make
subtle errors”; using De Bruijn indices, which is “easierget right”, but leads
to unreadability and complexity; or using unique names fobaund variables,
which is safer, but requires unique names for all models ofpeicfect, and ends
up making the output less readable. They finally chose thestdstion forCZT,
with the additional benefit that the unique attributes ofittemtifiers could be ex-
ported in the XML AST in order to use the ID/IDREF (unique itiéars/symbolic
link to unique identifiers) standard attributes. BRILLANT, we chose a similar
solution inBCamt we decided to institute a scoping phase after the parsiageph
in order to associate each identifier with a unique identiyer on, the processing
of new variables was facilitated not only by that unicityt biso by the recursive
nature of the syntax trees, which allows all free variabtelse retrieved. Indeed,
several libraries that provide functions for high-levetalatructures (e.g., lists,
sets, hash tables) exist in OCaml: and we were able to benafit dising these
libraries immediately.

Another frequent problem is slow processing times. Howéwh teams man-
aged to avoid this problem: like the tools@ZT, theBCamltools in BRILLANT,
interact via the abstract syntax tree directly instead ofb@ichange files, which
speeds up the processing.

All the above problems have been described in publicatieating withOver-
ture[38], although the problem seems to have been more conniectieeir choice
of compiler generator than to the compilation techniquelfitsSince the Rodin
project is still in the development stage, we would encoeriig) developers to
look at the projects discussed above, among others, in twdenefit from their
experience.

28 Dorian Petit et al.

From our perspectiv/BRILLANT has a very relevant process for developing
for formal methods. Implementing the B method with our tduddps to highlight
the weaknesses of the mathematical definition of the methweh as the lack
of documentation for handling variable instanciationshie tveakest precondition
calculus, or shortcomings of its more technical definitisnch as the problem
of parsing B models with standard Lex and Yacc tools. Moreollee UNIX,
BRILLANTadheres to a philosophy of separate but interconnectesl tdot sur-
prisingly then, the consequence is that extensions and todts are easily added
to the platform. From that perspective, we think tBRILLANT is a more than
adequate tool. Since most development projects are donénbysRidents and
young interns who are not yet full-time engineers, the siaitylof programming
language chosen f@RILLANT (OCaml) is a definite plus. Its powerful, well-
documented, high-level libraries, and its ability to blemdious programming de-
sign paradigms, already well-known in the academic sdier@dmmunity, make
it a most appropriate choice. In addition, the by-the-bawkfalism implemented
in BRILLANT makes integrating extensions, such as the B-HLL modulesyst
much easier than the other possibilities.

8.2 Conclusion

The BRILLANT platform design has two principal advantages: it uses open a
standardized formats, and the source codes for its toola@@nd/or Java so
far) are openly available. In addition, it can be used to &est/or validate B-
related experiments, and in fact, we were the first users ofyrofithe prototypes
now available for the platform (e.g., bparser, bgop, btypphox). We have been
working to finetune the platform to help it meet the needs beptheoretical
research projects, including but not limited to extendimgB language, improving
the current tools, providing couplings with other provexrg(, Coq, Harvey), and
offering other validation formalisms (e.g., model-chexki.

From the information presented in this article, it would eapthat we have
reached our goal of providing an open and standardised tdp4l) for a plat-
form that has become a testbed for several other fundamesstsrch projects
(e.g., UML/OCL/Bcoupling in section 7, proofs in sectionc®de generation in
section 6). All the source code examples in the article @@achines, logical for-
mulas, XML, PhoX) either come froBRILLANT, or derive from its use: The B
machines are’IeX files in theBRILLANT style, and theAIpX files were obtained
by applying an XSL stylesheet to XML abstract machines, thedues obtained by
parsing ASCII B machines.

The following table provides some figures about the size @fttoject:

BRILLANT 29

| Component | Lines of code] Comments |
kernel 8900
parser 3200
type-checker | 12500 (it has some duplicate code with

the kernel)

PO generator| 4000 (GSL libraries included)
flattening tool | 1700
bhll 2400
bphox 4200 (PhoX libraries and stylesheetg
uml plug-in 20300

8.3 Perspectives

In the future, we will work to integrate technologies thatlerse the use of open
formats into theBRILLANT platform. The following modifications are planned:
the use of XML schemas [53] instead of DTDs for validating XNlles; the
use of some recent promising results to replace XSLT procesgith OCaml-
Duce[37]; the use of XML flexibility to increase traceabhjlhetween UML mod-
els, B machines, proof obligations and other derived ma@ets, generated code,
test cases); the representation of B models as projectsatata using XPath and
XML-Query [16]; and a distributed platform architecturang XML-RPC [55],
which will allow the parser and prover to be represented ageseto which B
projects can be sent for parsing, validation or other taiska kind of "B-forge").

We also plan to finalize the integration of ABTOOLS [10, 9] it BCaml
Now part of BRILLANT, both of these tools were initially developped indepen-
dently. ABTOOLS, which provides an open environment based\NTLR and
JAVA, makes it easier to design and test extensions of thenguage. Lastly, we
hope to define an ergonomic interaction mode for the varidatopm tools, by
proposing a graphic interface suitable for the underlyitadfprm technologies.
This interaction will, consequently, rely heavily on XMLctenologies.

Several other projects, these more related to the fundairesearch currently
under way, also offer interesting perspectives for theriytauch as UML/OCL/B
coupling [33], temporal extensions for B [14], and safewafe component gen-
eration [42]. Much work remains to be done, and the platfoevetbpers will be
happy to provide their assistance to those who would likeyttot use the tools in
the context of their own research. All the necessary ressuiar buildingBRIL-
LANT should be available on the web site dedicated to collah@r&iee software
development [12].

References

1. ZB’2000 - International Conference of B and Z Usexdlume 1878 of ecture Notes in
Computer Science (Springer-Verlagjelsington, York, UK YO10 5DD, August 2000.

2. Jean-Raymond AbrialThe B Book - Assigning Programs to MeaningSambridge
University Press, August 1996.

30

i

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

Dorian Petit et al.

. Jean-Raymond Abrial."& Toward a Synthesis between Z and BZIB’2003 - Formal

Specification and Development in Z angdages 168-177, 2003.

. B4Freehttp: // ww. b4free. con .
. Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marghéaelier. METEOR : A suc-

cessful application of B in a large project. Rroceedings of FM'99: World Congress
on Formal Methodspages 369-387, 1999.

. Salimeh BehniaTest de modeles formels en B : cadre théorique et criterepaest-

tures Thése de doctorat, Institut National Polytechnique ddolime, October 2000.

. Didier Bert, Marie-Laure Potet, and Yves Rouzaud. A stadycomponents and as-

sembly primitives in B. In Henri Habrias, editdProceedings of 1st Conference on
the B methodPutting into Practice methods and tools for informatiosteyn design,
pages 47-62, 3 rue du Maréchal Joffre, BP 34103, 44041 N@wdex 1, November
1996. B1996, IRIN Institut de recherche en informatique aatss.

. Jean-Paul Bodeveix and Mamoun Filali. Type synthesis amn@ the translation of B

to PVS. InZB'2002 — Formal Specification and Development in Z an@8, pages
350-369.

. Jean-Louis Boulanger. Abtools : Another b tool. In Rieadd Machado Johan Lilius,

Felice Balarin, editorACSD, Third International Conference on Application of €on
currency to System Desigpages 231 — 232, Guimaraes, Portugal, June 2003. IEEE.
ABTools provides an open environnement based on ANTLR anA 3kd provides
somes facilities for design and test an extension for thenBuage.

Jean-Louis Boulanger. ABTools: A Free Tools for the Bivet INWMSCI 2005, 9th
World Multi-Conference on Systemics, Cybernetics andimftics Orlando, USA, jul
2005.

S.M. Brien and J.E. Nicholls. Z base standard: Versi@ Iechnical Monograph
PRG-107, Oxford University Computing Laboratory, 11 KeBead, Oxford OX1
3QD, UK, November 1992.

BRILLANT. http://gna.org/ projects/brillant.

M. Carnot, C. DaSilva, B. Dehbonei, and F. Mejia. Ermeefsoftware development
for critical systems using the B-methodolodiEE, pages 274-281, 1992.

Samuel Colin, Georges Mariano, and Vincent Poirriez.abdon calculus: A real-time
semantic for B. IrFirst International Colloquium on Theoretical Aspects afr@put-
ing. UNU-IIST, september 2004. Guiyang, China.

Samuel Colin, Dorian Petit, Jérdme Rocheteau, Rafaétdna, Georges Mariano,
and Vincent Poirriez. BRILLANT : An open source and XML-bdsplatform for
rigourous software development. 8EFM (Software Engineering and Formal Meth-
ods) Koblenz, Germany, september 2005. AGKI (Artificial Intgince Research
Koblenz), IEEE Computer Society Press.

World Wide Web Consortium. XQuery: the W3C query languéy XML — W3C
working draft. Available at http://www.w3.0rg/TR/xquér001.

Comprehensive Z Tool&tt p: // czt . sourcef orge. net/.

Babak Dehbonei and Fernando Mejia. Formal developnfesafety-critical software
systems in railway signalling. In M. G. Hinchey and J. P. Boweditors,Applica-
tions of Formal MethodsSeries in Computer Science, pages 227-252. Prentice Hall
International, 1995.

Theo Dimitrakos, Juan Bicarregui, Brian Matthews, Toaihdum, and Ken Robinson.
Compositional structuring in the B method: A logical vieviptoof the static context.
In ZB’2000 — International Conference of B and Z Usgrks pages 107-126.
Eclipse.http: //ww. ecl i pse. org/.

The www formal methods’ virtual librarypt t p: / /vl . frmet . info/ .

BRILLANT 31

22.
23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.
39.

Betriebliches Lastenheft fur FunkFahrBetrieb. Stad@®.1996, 1996.

Daniel Jackson, lan Schechter, and llya Shlyakhteoalthe Alloy costraint analyzer.
In International Conference on Software Engineeribgnerick, Ireland, June 2000.

L. Jansen and E. Schnieder. Traffic control system cadg:g2roblem description and
a note on domain-based software specification. technipalt,c2000.
jBTools.http://lifc.univ-fconte.fr/~tatibouet/JBTOOLS/ .

Rafael Marcano KamenoffSpécification formelle a objets en UML/OCL et B : Une
approche transformationnelleThése de doctorat, Université de Versailles — PRiSM,
December 2002.

Regine Laleau and Amel Mammar. A generic process to rafBispecification into a
relational database implementation.Z2B’2000 — International Conference of B and Z
Users[1], pages 22—41.

Régine Laleau and Fiona Polack. Coming and going from Wd/B : A proposal to
support traceability in rigorous is development ZIR'2002 — Formal Specification and
Development in Z and B1], pages 517-534.

X. Leroy, D. Doligez, D. Garrigue, J.and Rémy, and J. Noni The objective caml
system. Technical report, INRIA, 2005. Software and doauat@®n available on the
Webhttp://cam .inria.fr/.

Xavier Leroy. A modular module systemJournal of Functional Programming
10(3):269-303, 2000.

LSR-IMAG. ZB'2002 — Formal Specification and Development in Z and@ume
2272 ofLecture Notes in Computer Science (Springer-Verl&gnoble, France, Jan-
uary 2002.

Rafael Marcano and Nicole Levy. Transformation ruleO6fL constraints into B
formal expressions. ICSDUML'2002, Workshop on critical systems development
with UML. 5th International Conference on the Unified ModgliLanguageDresden,
Germany, September 2002.

Rafael Marcano and Nicole Levy. Using B formal specifarat for analysis and verifi-
cation of UML/OCL models. IWorkshop on consistency problems in UML-based soft-
ware development. 5th International Conference on the ébhififlodeling Language
Dresden, Germany, September 2002.

Rafael Marcano, Georges Mariano, and Philippe Bon. Wdted design and formal
analysis of railway traffic control systems. In SchniederaBd Tarnai G., editors,
FORMS’2004 / FORMAT'20Q4ages 173-182, Braunschweig, Germany, December
2004.

Rafaél Marcano, Samuel Colin, and Georges Mariano. #dbframework for uml
modelling with timed constraints : Application to railwagrdrol systems. ISVERTS:
Specification and Validation of UML models for Real Time amdbEdded Systems
Lisbon, Portugal, October 2004. (in conjunction with 7tkehmational Conference on
the Unified Modeling Language, UML 2004).

Georges Mariandvaluation de logiciels critiques développés par la méthBd une
approche quantitativeThese de doctorat, Universitée de Valenciennes et du Hfaina
Cambrésis, Dec 1997.

OCamlDuce websitéat t p: / / www. cduce. or g/ ocam .

Overture (VDM++).htt p: // ww. overturetool . org/.

P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and Heffekind D. J. Andrews
and J. Dawes and G. Parkin and others. Information techpeled®rogramming lan-
guages, their environments and system software interfacadenna Development
Method — Specification Language — Part 1: Base language,bleeel1996.

32

40.

41.

42.

43.

44,

45.

46.

47.
48.

49.

50.

51.
52.

53.

54.

55.

Dorian Petit et al.

Dorian Petit.Génération automatique de composants logiciels sOr a padetispécifi-
cations formelles BPhD thesis, Université de Valenciennes et du Hainaut Césig)r
Décembre 2003. Numéro d’ordre 03-34.

Dorian Petit, Georges Mariano, Vincent Poirriez, anandeouis Boulanger. Auto-
matic Annotated Code Generation from B Formal Specificatiom G. Tarnai and
E. Schnieder, editor§ymposium on Formal Methods for Railway Operation and Con-
trol Systemspages 37-44. L'Harmattan, May 2003. ISBN 963 9457 45 0.

Dorian Petit, Vincent Poirriez, and Georges Mariano. e T method and the
component-based approaciournal of Design & Process Science: Transactions of
the SDP$8(1):65-76, Mars 2004. ISSN 1092-0617.

Dorian Petit, Vincent Poirriez, and Georges MarianoudReof ML module system for
the B language. Ifrorum on specification and Design Languag8eptember 2004.
PhoX website{htt p: // ww. | ana. uni v- savoi e. fr/ sit el ana/ Menbr es/ pages_
web/ RAFFALLI}.

Marie-Laure Potet and Yann Rouzaud. Composition andawient in the B method. In
Didier Bert, editorB’98 : The 2nd International B Conferenoeslume 1393 of ecture
Notes in Computer Science (Springer-Verlgogges 46—65, Montpellier, April 1998.
B1998, LIRRM Laboratoire d’'Informatique, de Robotique etMicro-électronique de
Montpellier, Springer Verlag.

Marie-Laure Potet and Yann Rouzaud. Composition andewfént in the B method.
In B'98 : The 2nd International B Conferengeages 46—65, 1998.

ProB.http: //ww. ecs. sot on. ac. uk/ ~nal / syst ens/ prob. htni .

M. Richters and M. Gogolla. On formalizing the UML objeonstraint language OCL.
In Proceedings of the 17t International conference on Conptlodelling, ER’98
volume 1507 oLNCS Springer-Verlag, 1998.

M. Richters and M. Gogolla. Validating UML models and OGanstraints. IrPro-
ceedings UML 200@2000.

Jérdme Rocheteau, Samuel Colin, Georges Mariano, araeM Poirriez. Evalua-
tion de I'extensibilité de PhoX : B/PhoX un assistant de pesupour B. InJournées
Francophones pour les Langages Applicatifages 139-153, January 2004.
Rodin-B#.ht t p: // r odi n- b- shar p. sour cef or ge. net /.

Bruno Tatibouét, Antoine Requet, Jean-Christopheinpis and Ahmed Hammad.
Java card code generation from B specifications. In In J.8gCmd Eds. J. Wood-
cock, editors|CFEM, volume 2885, pages 306-318. Formal Methods and Software
Engineering, Springer-Verlag, 2003.

H. S. Thompson, D. Beech, M. Maloney, and Mendelsohn [disotin.
“XML Schema Part 1: Structures”. W3C Recommendation, May0120
http://www.w3.0org/TR/xmlschema-1/.

Geoffrey Norman Watson. A comparison of modularity in BdaCogito. In
S. Reeves L. Groves, editdiormal Methods Pacifigpages 263-286, 1997.
XML-RPC. Internet remote procedure cdittp://www.xmlrpc.com/spe@999.

