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1 Introduction

During the last decade of the previous millennium, theoretical research produced
the B method, which is based on the same fundamentals as Z [11]and VDM [39].
This method reconciles the pragmatic constraints of industrial development of crit-
ical software with the strict theoretical requirements inherent to mathematical for-
malism. The B method is one of the rare successful formal methods used in in-
dustry, and it supports multiple paradigms: Substitutionsas means for describing
dynamic behaviour naturally;Formulasin a simple yet efficient logical framework
(set theory);Composition mechanismsthat simplify development; andRefinements
that provide a safe and efficient way to obtain secure computer code from abstract
specifications.

The B method was used in the METEOR project [5], as well as in less well-
known development projects [13,18] and even non-critical development projects
[52]. The software industry adopted B largely because of theavailability of soft-
ware tools supporting all phases of the B development process (semantics verifica-
tion, refinement, proving, automatic code generation). Unlike most software tools,
B support tools resulted from prototypes developed by industry rather than by the
academic community. In fact, from 1993 to 1999, the “AtelierB” development
project was funded by the “Convention B”, which was a collaborative effort of the
RATP (Parisian Autonomous Transportation Company), SNCF (the French Na-
tional Railway Society), INRETS (the National Institute for Transport and Safety
Research) and Matra Transport (now Siemens TransportationSystems), among
others.

A computer scientist in the field of formal methods will perceive certain para-
doxes in the implementation of the B method. For instance, the B method uses pro-
gramming languages, such as B kernel, that are not well documented or specified
and that are not particularly well-suited to B’s high level of abstraction. In addi-
tion, some have observed that the B module language is rathercomplex and hard to
understand. G. N. Watson [54] goes as far as to call the proliferation of constructs
in the B module system, and the rules associated with them, somewhatdaunting.
Certainly, the semantics of the B module system has been studied by several re-
search teams. Bertet al. [7] have developed a component algebra to express the
INCLUDES and USES clauses. Potetet al. [45] have studied the IMPORTS and
SEES links, demonstrating that, in B, it is possible to buildan erroneous project
that appears to be correct; they have also proposed criteriaderived from the depen-
dency graph, which must be verified to eliminate erroneous architectures. Dimi-
trakoset al. [19] have studied the various composition clauses, focusing on the
conditions that must be verified to preserve the various component properties. Of
course, it can be argued that B modularity is complex becausethere are various
kinds of restrictions to ensure correctness. In any case, the inherent complexity of
the B method makes it important to provide a synthetic way to understand these
modular constructs (i.e., a way with just a few rules rather thanin extensoas done
by Abrial [2]).

Though these apparent paradoxes can be explained by the industrial origins
of the method, the fact remains that the industrial tools currently available for B
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are often inappropriate for scientific research, and thus donot provide effective
support for efforts to extend the use of the B method.

To remedy this problem, we have proposed theBRILLANT [12] framework,
showing the feasibility of a safe software development system that ranges from
semi-formal specification (UML) to contract-equipped codegeneration(i.e., equip-
ped with assertions from the abstract model). This framework provides a central
core into which various components can be plugged, including a central compo-
nent, a UML plug-in, a proof plug-out, and a code generator plug-out.

This paper is a revised and enhanced version of the article presented in [15].
Section 2 gives an overview of the BRILLANT effort and the BCaml part of the
platform. Section 3 briefly introduces the case study used toillustrate our ap-
proach, and section 4 presents the central component ofBRILLANT, which allows
the components of a B project to be manipulated. The parsing of B machines is
examined in section 4.1.1, highlighting the central role ofXML as an exchange
format. Section 5 presents the proof plug-out used to validate B proof obligations,
and section 6 describes a code generator plug-out that supports several target lan-
guages and is able to embed contracts into the code. Section 7describes the UML
plug-in used to translate UML projects into B so as to validate them, as described
by Marcano & Levy [33] and Laleau & Polack [28]. Finally, section 8 presents our
conclusions based on the results of our experiments with theimplementation and
use of theBRILLANTplatform.

2 Overview of the BRILLANT platform

Figure 1 shows the BRILLANT platform’s current organization. This platform is
the result of several years of academic research and development by a few Mas-
ters degree and PhD students. The original impetus for the research was the lack
of open tools allowing to manipulate and experiment with theB method. Thus,
our first project was to implement a parser for the B language (described in sec-
tion 4.1). We immediately realized that academia, or at least a part of it, was just
waiting for such an open tool since soon after its first release, two studies [8,27]
implemented our tool. Encouraged by this interest, we decided to continue by ad-
dressing the generation code process. Our first task was to find a way to take the
modularity of the B language into account, which we accomplished in two direc-
tions by defining the flattening(see section 4.2.1) and BHLL (section section 4.2.2)
components.

Since the B method is, at its center, proof related, a proof obligations generator
(the component POG described in 4.3) was also needed. At thispoint in time, the
only meta-language used in our platform development was Objective Caml [29].
However, it was obvious to us that a cooperative developmentplatform could not
remain language dependent, which led us to define and use an XML description
for B in order to facilitate connections with the tools developped by others. This
has already been done for connections with the proof assistant Phox (see section
5), and the XML description for ABTools [9,10] (on the left offigure 1) created
by the lab, Heudyasic, is under development in order to provide a double chain to
certify code.
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Some internal components were also developed to perform several B transla-
tions (from or to Tex, html, ocaml, eiffel, . . . ). Although wewere initially inter-
ested in generating code from B specifications, other researchers were working
on how to pass from semi-formal UML specifications to formal Bspecifications.
With these researchers, we were able to develop a plug-in designed to connect
their tool to the BRILLANT B abstract syntax tree (see section 7). BRILLANT
now provides a skeleton for a full development chain, from B specifications, even
from UML ones, to code. Some extensions can be simply pluggedin and explored.
In the rest of this article, we will highlight some features of the different platform
components and try to share some of the lessons learned whiledeveloping BRIL-
LANT. The next section introduces the case study that will beused as an example
throughout the article.

3 Case study

The traffic control system considered in this paper has been described in detail
by Jansen and Schnieder [24] (see figure 2), who use knowledgeabout the rail-
way domain as a basis for the formal specifications. The problem is to specify a
radio-based Railway Level-Crossing (RLC) application developed for the German
Railways [22] and to adapt it to the French rail system.

This application is distributed over three sub-systems: a train-borne control
(TC) system (i.e., an on-board system), a level-crossing control (LCC) system,
and an operations center (OC) system. The central system is the level-crossing
control system, the two others being cooperating actors that make use of the LCC.

The level crossing is situated on a single-track railway line at a point where the
line crosses a road on the same level. The intersection of theroad and the railway
line is considered the danger zone, since train traffic and road traffic must not enter
it at the same time. Note that this is the main safety constraint that must be taken
into account when describing the system.

The traffic lights and barriers at the level crossing are controlled by the LCC
system. This system must be activated when a train approaches the level crossing.
In the activated mode, the LCC performs a sequence of timed actions in order
to safely close the crossing and to ensure that the danger zone is free of road
traffic. First, the yellow traffic lights are switched on, andafter 3 seconds, they
are switched to red. After another 9 seconds, the barriers begin to lower. If the
barriers have been completely lowered within a maximum timeof 6 seconds, the
LCC system signals the safe state of the level crossing, thusallowing the train to
pass through the intersection.

The level crossing is opened to road traffic again once the train has passed
completely through the crossing area, and the LCC system switches back into the
deactivated mode.

Trains approaching the level crossing are detected via a process of continuous
self-localisation on the part of the train and radio-based communication between
the train and the LCC system. The vehicle sensor situated on the far side of the
crossing triggers the re-opening of the barriers and tells the traffic lights to switch
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Fig. 1 The overall organization ofBRILLANT
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Fig. 2 The level crossing problem

off. During the activated mode, the LCC system can be in one ofthe following
substates (Fig.3): yellow light showing; barrier closing;barrier closed; or barrier
opening. Note that the time expirations occurring after theLCC is activated are
denoted by the eventstimeOut 1 (3 seconds later) andtimeOut 2 (9 seconds
later).

Activated

Deactivated

Failure

trainDetectionEntry
/ yellowLightOn()

Closing
Barrier

Yellow
LightOn

ClosedClosed

Opening
Barrier

Opening
Barrier

timeOut_1 / redLightOn()

[bSensor.status=Closed]
/ setMode(Safe)

trainDetectionRear
/ openBarrier()

repair

deactivate

timeOut_3

failure

Red
LightOn

[bSensor.status=Opened]
/ setMode(Unsafe)

timeOut_2 
/ closeBarrier()

Fig. 3 State diagram of the LCC system

We will use this case study to illustrate our approach throughout the paper,
except in section 6 in which we will use a bounded stack example that will be
more convenient for code generation.

4 The BCaml Kernel

In this section, we describe the three component parts ofBCaml: a parser (with an
XML output library to connectBCamlwith the outside world), libraries to handle
the modularity of B projects, and a proof obligation generator.
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4.1 BCaml input and output

The kernel of theBCamlplatform is made up of the first bricks that were devel-
oped when the platform was created. These bricks specify theconcrete grammar
(section 4.1.1) that defines the B language and the abstract syntax (section 4.1.2)
that defines the type used to manipulate the specifications. This may seem obvious,
but it is nonetheless important because it makes collaboration with other develop-
ers possible. One of these collaborative projects led to thedevelopment of another
brick in theBCamlkernel, called theBtyper. This brick is not described in this
paper, but more details can be found in Bodeveix & Filali [8].

4.1.1 A concrete grammar for B

Several B grammars have been introduced over the years, coming from a vari-
ety of sources:Clearsy(prev.Steria), which corresponds to the grammar used in
Atelier B; B-Core, which corresponds to the grammar used inB-Toolkit; and Mari-
ano’s PhD dissertation [36], based on theB-Core grammar, which was introduced
to do metrics on B specifications.

In order to build a tool that would be as useful as possible, weneeded to define
a grammar that would take into account the criticisms of the grammars presented
above. OurBCamlchoices had to respect the following constraints:

– They had to be as compatible as possible with the machines that can be cor-
rectly parsed by the commercial tools mentioned above (i.e., Atelier B, B-
Toolkit),

– they had to comply with the standardLex and Yacc tools that allowLALR
grammars to be defined, and

– they had to cause as few conflicts as possible.

We chose OCaml [29] as a support tool for our B development forseveral
reasons. Not only does it allow symbolic notations to be handled easily, but in
addition, it also implements efficiently and comes bundled with tools that allow
the parsing ofLALR grammars. Using these tools, we defined the B language in
LALR.

4.1.2 Abstract syntax and XML syntax—two isomorphic formats

We used our definition of abstract syntax to directly infer anXML representa-
tion for B formal specifications. (Due to lack of space, this abstract syntax is not
described here.) This XML encoding is called "B/XML" and is stored in an XML
DTD file. Such abstract syntax is, as could be expected, more tolerant than concrete
syntax, and contains elements that facilitate the handlingof the syntax structure.
For instance, the[substitution]predicateand [variable instanciation]substitution
constructions appear in this abstract syntax. The first construction corresponds to
the form of a formula prior to a calculation of its weakest precondition. The second
construction appears, for instance, when the parameters and operations have to be
instanciated. The existence of these constructions in the abstract syntax mean that
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the structure can be manipulated to bring it closer to the matching mathematical
definitions given in the B-Book [2].

We chose XML as our pivot format because of its flexibility andits ease-of-use
with third-party tools. Using it makes our tools as independent of one another as
possible, allowing a researcher to use our parser, but someone else’s proof tool, for
example. This flexibility is insured by the following aspects:

– XSL style sheets can be used to formulate simple recursive treatments of the
XML structure, mostly transformations into other structured formats (e.g., LATEX,
HTML, or PhoX, as mentioned in section 4.3.3); and

– other programming languages can be easily used for more complex manipula-
tions because most of the time these other languages are ableto read XML data.
This means that researchers can use their preferred programming language, as
long as it has libraries for reading an XML format.

4.1.3 HowBCamlexploits the Abstract Syntax Tree (AST)

BCaml takes advantage of both of the features described above. TheXML
approach extends the platform’s plug-in/plug-out abilitygreatly, while the use of
a well-defined, efficient meta-language as the core implementation language leads
to a formal standard definition of the B grammar and allows theprovision of more
efficient components, easily understandable by others. Themain drawback of this
choice of formats is the difficulty of making both formats evolve together. When
designing a component interface to be plugged in, one natural guideline is to use
the core implementation language if high efficiency is required, in order to avoid
a translation step (which is the choice made for theBTyper, thePOGand the AST
manipulation tools, for example), and to rely on the XML exchange format in all
other cases (which is the alternative chosen for B/PhoX).

4.2 B modularity related AST processing

Two examples of the complex AST manipulations available in theBRILLANTplat-
form are presented in the following sub-sections:

Flattening, which can be seen as a way of expanding the abstract mathematical
code of a machine into a concrete code through its refinementsand included
machines;

Modularisation, which involves using a well-grounded modular system that pro-
duces a modular language from a flat language and a description of the desired
modularity.

4.2.1 The flattening algorithm
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B specifications are flattened by eliminating the refinement and composition
links. The flattening algorithm aims to build a single B component, starting with
a set of B components (a B "model") and grouping all the (selected) information
extracted from the various specifications grouped into one formal text.

The resulting component is the "equivalent" of the initial model from the point
of view of automatic code generation.

This notion of flattening exists implicitly in the B-Book [2]. Though Potet and
Rouzaud used the term "flattening" in their work [46], it was Behnia [6] who spec-
ified the algorithm entirely, and it’s her specification thatwe used in our tool. The
principle of the algorithm is to connect the specification from the leaves (where
only theIMPORTS andREFINES links are taken into account) to the root machine of
the project.

Implementation: The flattening tool was the first tool implemented after the
BCamlkernel was designed (section 4). This implementation was intented to "eval-
uate" the kernel’s usability and to add those tools/libraries that would be useful
for manipulating B specifications to the platform. In order to implement the tool,
two things had to be done. First, the specification dependency graph had to be
equipped to navigate through the specifications in order to build the successive
flattened components. To accomplish this, we developed a library called BGraph,
which implements the dependency graph type and the functions needed to manip-
ulate that graph. Second, all the conditions that allow a setof B components to be
flattened had to be verified.

4.2.2 The B-HLL module system

Overview The Harper-Lillibridge-Leroymodule system (HLL) presented in Leroy
[30] formalizes the Standard ML-like modules. The HLL system provides a means
for adding a module language to a module-less core language.This system also
permits a formal semantic to be given to an existing module language, as is the
case for the ML modules. Moreover, this powerful semantic isable to implement
the module language with relative simplicity.

Once the HLL module system has been instantiated, it is possible to define
structures (i.e., list of values, types, modules or sub-modules) and functors (module-
to-module functions) in the obtained modular language. A more complete descrip-
tion of our work on B-HLL can be found in our article publishedin 2004 [43].

Instantiation Figure 4 sums up our use of the HLL system. As shown in the mid-
dle level in figure, the HLL module system includes three functors. These functors
are given modules defining the abstract grammar and the type-checking rules (up-
per level of the figure) and in turn produce several modules (lower level of the
figure) that deal with the modularity of the language.

Our efforts to instantiate the HLL module system were divided into two parts,
which are shown on the upper level of Figure 4. The first part involved defining the
abstract language of the B core language under study, based on the abstract syntax
defined during the development of theBCamlkernel. From this abstract syntax,
we removed the part of the syntax dedicated to the modularitylanguage, and then
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we developed a mapping function from theBCamlkernel abstract syntax to our
new abstract syntax.

Fig. 4 Using the HLL module system

The second part of the instantiation involved defining the type checker. The
types and the type-checking algorithm we used were adapted from the work of
Bodeveix and Filali [8]. We added some type-checking rules to express the visibil-
ity rules described in the B-Book [2], and we also defined type-checking rules that
take into account B language particularities, such as the semi-hiding principle and
the prohibition of calling a given operation in the component where that operation
is defined. (More details about this can be found in [43,40]).

The modules produced by the HLL system are:

Amod: the module for modularity functions, indicating whatkinds of modules are
available;

Aenv: the module for environment handling, indicating how information can be
retrieved from referenced modules;

AModTyping: the module for modular typechecking, indicating how types can be
inferred in a modular context.

By using the HLL system, it is possible to build a modular language for B al-
most automatically, without knowing much about the internals of the HLL system.

4.2.3 Code generation feedback

Although implementing the flattening algorithm validated the already devel-
oped bricks and constituted our first complete code production chain, using a pub-
lished formally-defined system like the HLL module system asthe core of the
code generation process had an unexpected benefit in that it clarified the notion of
modularity in the B language. Though the B developers do not need to know the
details of how modularity is implemented, they do need to know that the genera-
tion tool complies with all the visibility rules specified inthe B-Book. This tool
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allows structured code to be generated in components equipped with contracts (see
section 6).

4.3 Generating proof obligations

In this section, we first describe the method used to implement the existing calculus
for the weakest precondition. Then, we show how this calculus can be used to
generate the proof obligations of a B project. Last, we present the various options
available for exporting these proof obligations to other formats and other tools.

4.3.1 Generalized Substitution Language (GSL)

In order to generate proof obligations for B machines, we must be able to cal-
culate the weakest preconditions of the substitutions. In anutshell, the weakest
precondition calculus allows the minimal state for a given program, orsubstitu-
tion, to be calculated in order to verify a given predicate, orpostcondition. Hence,
when we use “calculated” or “uncalculated” here, we refer tothe state of a weak-
est precondition calculation. A proof obligation (PO) is calculated if all the weak-
est precondition calculations and all the variables instanciations have taken place.
Thus, a calculated PO looks like a regular predicate, while an uncalculated PO still
contains the substitutions expressed in a B component.

We chose to follow the approach defined in the B-Book [2]: reducing B substi-
tutions to their smallest syntactic and semantic set (i.e.,generalized substitutions).
In the following paragraphs, we useGSLto denote both the syntactic set and the
substitutions that compose it. Following the B-Book [2, B.3], we define theGSL
in BCamlas an abstract data type, with the following notable exceptions:

– The assignment is defined as a multiple substitution; it serves as a basic con-
struct once the parallel substitutions have been reduced, and thus can be viewed
as an optimisation.

– The repetition substitution "̂" is used to reason about the semantics of the
while substitutionand to propose a sufficient predicate [2, E.7] that could be
used instead of the necessary and sufficient predicate.

– The instanciation ([variable:= expression]substitution) of a substitution vari-
able (the parameters of an operation, for instance) is reduced before transform-
ing the substitution. (This idea is not documented precisely by Abrial [2], and
thus it corresponds to an extrapolation on our part.)

The first and the third exception are rather straightforward, but the second re-
quires a more detailed explanation. The real weakest precondition can be only
obtained from a fixpoint application over thisrepetition substitution. This fixpoint
can not be calculated in general by programming it. Thus, although the repetition
GSL appears in the B-Book, it never appears in the actual calculations of the proof
obligations, so we chose not to include it. Nonetheless, should the need arise, it
could be introduced, because its semantics have been definedprecisely.

With the help of the abstract data type, proof obligations can be generated
according to the rules described in the B-Book [2, appendix E]. The corresponding
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BCamlcode was written with readability in mind, making it easy to match the code
with the rule from which it is derived.

4.3.2 Proof Obligation Generation

The main steps for generating proof obligations from a project can be divided
into precise steps. These steps are described in more detailbelow:

Parsing First, the machine and all the machines it depends on are parsed. To
improve efficiency, we decided to directly use theBCamlkernel libraries directly
for parsing rather than reading the XML files produced by the parser.

(LCC ∈ P1 (Z)
∧ STATE ∈ P1 (Z)
∧ STATE = {Deactivated,ShowingYlight,ShowingRlight,

ClosingB,OpeningB,ClosedB,Failure}
∧ ...
∧ Yellow.lState(yellowLight(obj )) = On)
⇒

[ state(obj) := ShowingRlight
‖ Yellow.switchOff(yellowLight(obj ))
‖ Red.switchOn(redLight(obj))
]
( lcc ⊆ LCC
∧ lcc_barrier ∈ lcc → barrier
∧ ...
∧ ∀obj.

( obj ∈ lcc
∧ bStatus(lcc_sensor(obj)) = Opened
∧ bState(lcc_barrier(obj )) = Closed
⇒

mode(obj) = Unsafe
)

)

Fig. 5 Uncalculated proof obligation for the
timeOut 1 showRlight operation

Generation of formulas The for-
mula generation step is based on the
B-Book [2, appendix F], resulting in
proof obligations with the following
form: [Instanciation]Hypothesis⇒
[substitution]Goal.

This generation method allows
more handling flexibility later on,
for instance when debugging the
proof obligation generator, or when
showing students how proof obli-
gations are generated, or when the
proof tool applies the substitution to
the goal. Figure 5 shows an example
of an uncalculated proof obligation,
derived from the B project presented
in section 7.

Optimizations Several additional
optimisations, or processing proce-
dures, can be applied to the gener-
ated formulas. For example, formu-
las can be calculated, resulting in

predicates that contain no substitutions. It is also possible to split the goal, by split-
ting the formula into as many formulas as there are members ofthe conjunction in
the goal:

(H⇒G1∧ . . .∧Gn) ; (H⇒G1), . . . ,(H⇒Gn)

Other possible optimizations that were not implemented include removing for-
mulas when the goal is trivially true or appears in the hypotheses, or changing the
form of the formula to adapt it to a precise theorem prover. Certainly, it is some-
times easier to apply such transformations to the abstract syntax tree than to XML
files using stylesheets. We did not implement these optimisations because we do
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not believe that semantic interpretation is the province ofthe PO generator, but
rather of the prover, despite the fact that this semantic interpretation can be easily
related to the abstract syntax (e.g., like a goal appearing in the hypotheses).

Final files and trace information Once the formulas have been generated, some
trace information is embedded into the resulting file. Traceinformation can be
found in the absolute name of the file, which reflects the kind of proof obligation
that is in the file, and the machine from which it is generated.This trace informa-
tion can be used later to find problematic parts of a B project if the corresponding
proof cannot be achieved. The XML information in the file contains not only the
predicate itself, but also a root tag named (for obvious reasons)ProofObligation.
In addition, the file contains a tag that includes all the freevariables of the formula
because some theorem provers require that all variables be bound. This tag helps
the stylesheet to generate a file for such theorem provers more easily.

4.3.3 Exporting to other tools

Once the proof obligations in the XML format are available, the XSL stylesheets
allow them to be exported to other tools. For instance, the proof obligations can
be converted into LATEXfiles (figure 5 is an example of the results obtained); into
text files, which are easily read by humans; into HTML files, which improve the
readability of the formulas; or into a format suitable for a prover, in order to verify
the proof obligations.

Figure 6 in section 5.1 presents the result of an XSL stylesheet application to
the proof obligation shown in figure 5. In the next step, the theorem prover is fed
the generated proof obligations file (see section 5). All of these steps (including
replacing the conjunctions in the hypotheses with implications) are done via the
XSL stylesheet, demonstrating thead hocsuitability of this technology designed
for simple treatments involving recursivity.

More complex transformations might be doable with stylesheets, but it would
run the risk of becoming uselessly wordy and, more importantly, less maintainable.
For this reason, we advise using stylesheets only for translations that preserve the
overall structure.

5 From B proof obligations to correctness

BCamlprovides the first two important types of B tools, presented in Abrial’s B#
[3, section 4]. The first includes the lexer, parser and typer; the second, the proof
obligation generator. The third and last important B tool isthe automatic, inter-
active prover. We chose not to develop such a tool withBCaml for a pragmatic
reason: building a B prover according to our specifications takes much more time
than developing dedicated libraries for an already existing prover. Instead, we built
a replaceable add-on. We included the PhoX proof checker [44] because 1) it can
be extended to the B mathematical foundations; 2) its GPL licence permits distri-
bution along withBCaml; 3) its developers were willing to work closely with us;
and 4) its intuitive syntax minimises library development time.
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Our contributions consist of libraries dedicated to set theory for the PhoX proof
assistant and the necessary extensions to make the proving task automatable. These
extensions include:

– A time-out process controllerThe PhoX proof assistant is interactive but can
be used on the command-line to “compile” (i.e., replay) proof scripts. We de-
cided to add time-out limits in order to identify difficult proofs more quickly
so they can be handled by a human.

– XSL stylesheetsThese stylesheets are used for translating B proof obligations,
saved as XML files, to B/PhoX proof obligations.

– A GNU Make script These scripts re used to handle the whole chain from B
proof obligations to proved formulas.

The result is a plugout for B projects, defined on top of the PhoX proof assistant,
for automatically and interactively proving B proof obligations.

5.1 Thebgop2phoxXSL style sheet

add_path "/usr/share/ brillant /bphox/".
Import Blib.
flag auto_lvl 2.
flag auto_type true.
theorem op
/\ Activated,BARRIER,Closed,ClosedB,

Closing,ClosingB,Deactivated,DownSpeed,
...,

Yellow. lState ,Yellow. light (
(LCC in (part1 Z)) −>
(STATE in (part1 Z)) −>
...
((Yellow. lState app (yellowLight app (obj ))) = On)
−> (
/\ obj ((

((obj in lcc) &
(( state <+ \o (o = obj,ShowingRlight) app (obj))

in Activated)) &
((bStatus app (lcc_sensor app (obj))) = Opened))
−>

((mode app (obj)) = Unsafe)) ) )
.

Try intros ;; auto .
save.

Fig. 6 One of the exploded proof obli-
gations fortimeOut 1 showRlight, con-
verted to B/Phox

During the translation step, our XSL
bgop2phox stylesheet is applied to
the B/XML proof obligations using a
XSLT processor. The XSL transforma-
tion schema allows recursive mapping.
Thus, our translation is also defined re-
cursively. A first-order languageà la B is
composed of various symbols for func-
tions, relations, connectors and quanti-
fiers. Figure 6 is the output of the XSL
stylesheet applied to the formula in fig-
ure 5, after it was calculated and saved
in an XML file.

A high-order languageà la PhoX
is a simply-typed lambda calculus with
some typed constants. Our translation is
based on associating every first-order B
symbolSwith a B/PhoX expressionS†,
such that its extension to the first-order
terms formulae is simply defined by an
inductive commutation. We showed [50]
that under reasonable assumptions (ba-
sic constants and functions are similar
up to the† translation) proofs made with

B/PhoX are equivalent to B proofs. As a consequence, using the PhoX system of
simple types makes our translation sound. Moreover, every non-freeness rule and
every substitution rule can be easily obtained through theλ binder properties.
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5.2 Theblib PhoX library

The PhoX library for B reflects the first three chapters of the B-Book. The con-
tent of the library is outlined briefly here because the process for embedding B
into PhoX is based on it. (More details are available in Rocheteauet al. [50]). In
fact, the library is a collection of successive libraries for predicate calculus with
equality, the boolean domain, cartesian products, set operators, binary relations,
functions, arithmetic theory and finite sequencing.

5.3 The B/PhoX proof process

A successful proof for a B project is built using a fixed-pointprocess involving the
time-out controller. The whole set of generated proof obligations is run through a
first session of the prover, with proofs that take longer thanan arbitrary value being
forcibly stopped via the time-out controller. A second session is then run, but only
for those proof obligations that could not be proved, with a greater time-out value.
All subsequent sessions follow the same logic, each time increasing the time-out
value, until all proof obligations have been proved or untilthe engineer decides to
stop everything and to prove the problematic formulas interactively. There is one
drawback to this method: because PhoX is used as a "black box", the state of the
ongoing proof is not saved at that moment it is stopped; thus the next session will
have to replay the proof from the beginning.

Table 1 shows the result of a proof session for the famous "Boiler" B project.
This table shows that all the reasonably easy proofs are finished within a small
time-out value. The results are similar to the results for the same B project us-
ing the Atelier B tool, which demonstrates the viability of our approach using an
interactive prover for automated proving.

Time-out 1 s. 5 s. 60 s.
Generated proof obligations 2295
Successful 1823 1955 1971
Failed 0 0 0
Stopped 462 340 324
Proof Rate 79% 85% 85%

Table 1 Proof results for the Boiler

6 From B specifications to code

The generation process for producing flat code is illustrated in Figure 7 and the
process for producing component-oriented code is illustrated in Figure 8. (More
details on our approach to generating code can be found in references [41] and
[42].) To generate flat code, the specifications have to be parsed, annotated with
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Fig. 7 The code generation process to obtain flat code

Fig. 8 The code generation process to obtain component-oriented code

their types, and then flattened. Code can be easily generatedfrom the flat B spec-
ifications by using an XSLT processor and the appropriate stylesheet. To generate
component-oriented code, the specifications must be parsed, and then translated
into BHLL specifications; these, in turn, are annotated with their type. Once the
specifications have been typed, they are run through the partof the flattening al-
gorithm dedicated to eliminating refinement links in order to produceBHLL com-
ponents. A stylesheet is then applied to the components thusobtained in order to
generate the code. Since the structure of the specificationsis maintained, we call
this type of code generation, component-oriented code generation.

Figure 9 presents a B specification of a short and well-known example: a
bounded stack. The code presented in figure 10 is generated from this specifica-
tion. The package specifications use the generic Ada construction to translate the
parameters that specify the size of the stack. Our approach to code generation al-
lows the properties that are expressed in the specificationsto be put into the code.

Provided that the target language has semantics similar to that of “B imple-
mentable code” (i.e., the substitution of anIMPLEMENTATION), then it is theoret-
ically possible to use this target language for code generation. However, as indi-
cated beforehand generating code using XSL stylesheets is only manageable for
translations that maintain the original structure. For this reason, OCaml and Ada
generations can be done with stylesheets, but it would be toodifficult to do in the
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MACHINE stack(stack_size)
CONSTRAINTS

stack_size ∈ N

∧ stack_size ≥ 1
∧ stack_size ≤ MAXINT
VARIABLES

the_stack, stack_top
INVARIANT

the_stack ∈ (1..stack_size) → N

∧ stack_top ∈ N

∧ stack_top ≥ 0
∧ stack_top ≤ stack_size
INITIALISATION

the_stack :∈ (1.. stack_size) → N

‖ stack_top := 0
OPERATIONS

push(addval) =̂
PRE

stack_top < stack_size
∧ addval ∈ N

THEN
stack_top := stack_top + 1
‖ the_stack(stack_top + 1) := addval
END;
...
END

IMPLEMENTATION stack_1(stack_size)
REFINES stack
INITIALISATION

the_stack := (1..stack_size) × {0};
stack_top := 0

OPERATIONS

push(addval) =̂
BEGIN

stack_top := stack_top + 1;
the_stack(stack_top) := addval

END;
...
END

Fig. 9 A B specification of a bounded stack

generic
stack_s ize : na t u ra l ;

package stack i s
function is_empty return boolean ;
procedure push ( addval : in na t u ra l ) ;
procedure pop ;
function top return na t u ra l ;
function i n i t i a l i s e d return boolean ;

end stack ;

package body stack i s
−−# i n v a r i a n t s tack_top >= 0
−−# and stack_top <= stack_s ize

the_stack : array ( 1 . . S tack_s ize ) of na t u ra l ;
s tack_top : 0 . . S tack_s ize ;

procedure push ( addval : in na t u ra l ) i s
begin
−−# pre stack_top < stack_s ize
stack_top := stack_top + 1;
the_stack ( s tack_top ) := addval ;

end push ;

. . .

begin −− i n i t i a l i s a t i o n
stack_top := 0

end stack ;

Fig. 10 The specification and the body of the bounded stack Ada package

assembly language, for instance. In that case, more thorough structural manipula-
tion would be easier to handle directly in the OCaml code of BCaml.

7 From UML/OCL models to B specifications

This section introduces an UML plug-in for BCaml that helps to verify the con-
sistency of an UML model by translating it into a B specification and using the
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verification tools validate the B specification, which in turn ensures the consis-
tency of the UML model. Sections 7.1,7.2 and 7.3 presents thesteps involved in
specifying a UML model and the associated safety constraints. The different steps
are illustrated using the example of the railway level-crossing example presented
in section 3. Sections 7.4, 7.5, and 7.6, respectively, describe how to translate UML
diagrams into B, how to enrich the obtained B specification with the UML model’s
OCL constraints, and how to prove the consistency of the UML model by verifying
the enriched B specification.

7.1 From requirements to UML models

The "elicitation problem" (i.e., the creation of a valid initial description of the re-
quired system properties) is essential to ensure the correctness of the future system.
The consistency of the system depends on the developer’s ability to understand and
incorporate key safety properties. Therefore, knowledge of the context in which
the system operates plays an important role in eliciting system requirements. Our
approach to requirement analysis is based on the approach taken by Marcanoet al.
[34], in which both the static and dynamic properties of the system are taken into
account through various UML diagrams.

Describing the entities involved and their invariants facilitates comprehension
of the static properties. Describing the way that system actors will interact with
each other and the system leads to a full comprehension of thedynamic properties
of the future system. The Object Constraint Language (OCL) is used to express all
the properties that cannot be expressed through diagrammatic notation alone (i.e.,
hypotheses and facts related to subsystems, classes, attributes and associations).
OCL is also used to describe the system safety conditions. Thus, system modeling
can be divided into two steps:

– First, UML sequence diagrams must be defined in order to describe both cor-
rect operating scenarios and failure scenarios

– Second, the expected behaviour of the system must be described completely as
a set of OCL pre- and post-operational conditions

UML state diagrams will be defined for the combined operations of the entire
system in order to describe the overall interaction of the system with each actor in
its environment.

7.2 UML-based-modelling

In the railway example described in section 3, the central system is the level-
crossing control (LCC) system, the two others-a train-borne control (TC) system
and an operations center (OC) system-being cooperating actors that make use of
the LCC. To create a UML model, first, it is necessary to identify the main enti-
ties that must be modelled to determine possible LCC system failure conditions.
A primary cause of such failure conditions could be malfunctioning sensors or ac-
tuators. Defects leading to failures may be detected in the main physical structures
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or in the control systems themselves. In this case study, only a limited number
of failures are considered: failures of the yellow or red traffic lights (which are
considered separately), the barriers, and the vehicle sensor, and the delay or loss
of messages sent through the radio network. For any of these failures, the follow-
ing objects that interact with the LCC system (Fig.11) are examined: the lights,
the barriers, the vehicle sensors, the train-borne controlsystem, and the operations
center.

LevelCrossingControl

Light

BarrierBarrierSensor

TrainborneControl

VehicleSensor

OnboardPanelOperationPanel

Controller TrainDriver

OperationsCenter

state : LIGHTstate
switchOn()
switchOff()

getBarrierStatus()
status: bSTATE

lcc_train

train_oc

state : bSTATE

sendSignal()

state : STATE

closeBarrier()
openBarrier()
yellowLightOnt()

mode : {Safe,Unsafe}

redLightOn()
trainDetectEntry()
trainDetectRear()
yellowLightOff()
redLightOff()

rear

1

theBarrier

*

close()
open()

1

1

sensor

redLight

1

bSensor
1

1

oc

lcc_oc

1

1

yellowLight

lc

0..1

lc

state : tSTATE

getStateLC()
*

applyBreaks()
continueRun()

oc

**

releaseBreaks()
receiveAck()
downSpeed()
upSpeed()
askAck()
standStill()

train

0..1

train

Fig. 11 RLC system : Class diagram

7.3 Adding OCL constraints

Using a standard formal language for constraint specification is an important step
towards formalizing complex models, particularly in the context of critical safety
systems. The purpose of OCL is to allow the constraints related to system objects
to be formally specified, preserving the comprehensibilityand readability of the
UML models. OCL facilitates the statement of the propertiesand the invariants of
the objects, as well as that of the pre/post-conditions for the operations. OCL also
provides a navigation mechanism that allows attributes, operations and associa-
tions to be referenced in the context of a class or an object (aclass variable), and
query operators that permit a set of elements to be selected and/or modified. Each
OCL expression has a specific type and belongs to a specific context. The con-
text of an OCL expression determines its scope. Only the visible elements in the
context of the expression can be referenced by means of navigation expressions.

Safety properties are included in the system invariants in order to propagate
them from the abstract specification phase to the implementation phase. The main
property of the LCC system is to prevent both road and rail traffic from entering the
danger zone at the same time; to do so, the control specifications for the crossing
area and its barrier, as well as any trains that may pass through the level crossing
at any time, must be modelled at a high level of abstraction. For these reasons, the
following OCL invariants are specified for these classes, asshown in Fig.12:
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1. Req.If there is a train crossing the danger zone then the barrier is closed

context CrossingArea inv:

not(self.train->isEmpty()) implies self.barrier.state=Closed

2. Req.If the barrier of the crossing area is open, then no train is approaching the
danger zone context Barrier inv:

self.state=Opened implies self.guards.train->isEmpty()

3. Req.If the barrier of the crossing area is closed, then a train is crossing the
intersection context PhysicalTrain inv:

self.crosses.barrier=Closed

CrossingArea

PhysicalTrain{not(self.train->isEmpty()) implies
self.barrier.state=Closed
and
self.barrier.sate=Opened implies
self.train->isEmpty()}

{self.crosses.barrier.state=Closed}

Barrier

criticalZone : Zone

speed : real
distance : real

train

crosses

0..1

0..1

state : bSTATE
guards barrier

1 1 {self.state=Opened implies
self.guards.train->isEmpty()}

Fig. 12 Constraints related to the danger zone

These constraints must hold true for a more detailed design once decisions have
been made about the actual type of hardware to be used in an implementation. In
this case study, the notion of "train passing through the intersection" is connected
to the activation of the railway level crossing. In order to accomplish this task, the
front and the rear of the train must somehow be detected. We assume that the train
can be detected directly through use of abstract vehicle sensors. The barrier state is
detected by introducing a barrier sensor. In light of these assumptions, the previous
OCL invariants can be refined by adding the following LCC system constraints for
the class shown in Fig.11:

1. Req.The red light is switched on whenever the barrier is closed, and the yellow
light is switched on when the barrier is closing. If both the yellow and the red
lights are switched off, then the barrier is open.

context LCC System inv:

self.theBarrier.state=Closed implies self.redLight.state=On

and self.theBarrier.state=Closing implies self.yellowLight.state=On

and self.yellowLight.state=Off and self.redLight.state=Off

implies self.theBarrier.state=Opened

2. Req.If a train is in the danger zone, the level crossing is in an activated state
composed of four substates (WaitingAck, Closing, Closed, Opening).
context LCC System inv:
not(self.train->isEmpty()) implies self.state=Activated and
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Set(Activated)=Set(WaitingAck->Union(Closing)->Union(Closed)->Union(Opening))

3. Req. If the LCC system is in the activated state while the barrier is open, then
the level crossing is in an unsafe mode.

context LCC System inv:

self.state=Activated and self.bSensor.state=Opened implies self.mode=Unsafe

4. Req.If the registered state of the barrier is closed and the trigger sensor indi-
cates that it is open, then the level crossing is in an unsafe mode. This is the
case when the barrier is in the closing state; the LCC remainsunsafe until the
barrier is completely closed.

context LCC System inv:

self.bSensor.state=Opened and self.theBarrier.state=Closed) implies self.mode=Unsafe

The operations of the LCC class are specified with OCL pre- andpost-conditions.
OCL is also used in sequence diagrams to complete the preconditions and invari-
ants related to operations. Although state diagrams are used to derive the initial
specification of each operation (i.e., the description of a state transition), OCL
constraints are needed to add supplementary information that can not be retrieved
from the state diagrams.

Consider the closing of the barrier raised by the eventtimeOut 1. The precon-
dition of the operationcloseBarrier ensures that the yellow light is switched on
before sending the closeBarrier order, in addition to ensuring that the barrier has
not yet been closed. The postcondition ensures that the state of the yellow light
is off, the state of the red light is on, and the state of the barrier is closed. The
operation is specified as follows:

context LCC System::closeBarrier

pre: self.yellowLight.state=On and self.theBarrier.state=Opened

post: self.yellowLight.state=Off and self.redLight.state=On and

self.theBarrier.state=Closed

7.4 Formalization of classes and state diagrams

Our main goal is to extract an initial B specification (calledthe “abstract” specifi-
cation) from the UML diagrams and to use it to check for inconsistencies. To do
so, an abstract machine is associated to each class. Subsequently, the B method is
used to provide details about each component with regard to the behavior of class
operations and the global invariants. At this point, the system developer must make
several important decisions concerning unspecified properties and then introduce
these properties into the UML diagrams using OCL constraints. The UML dia-
grams are then translated into B, and the resulting B specification is used to check
the consistency of all the UML diagrams and OCL constraints.

Consequently, the B specification is not a good illustrationof code generation
because the overall process was designed with consistency checking in mind rather
than code generation. However, the existence of a tool allows us to explore in what
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MACHINE Barrier
USES BarrierSensor
SETS BARRIER
VARIABLES barrier, bState
INVARIANT

barrier ⊆ BARRIER
∧ bState ∈ barrier → bSTATE
INITIALISATION

barrier ,bState := ∅,∅
OPERATIONS

openBarrier(obj) =̂
PRE

obj ∈ barrier
∧ bState(obj) = Closed
THEN

bState(obj) := Opened
END;

closeBarrier(obj) =̂
PRE

obj ∈ barrier
∧ bState(obj) = Opened
THEN

bState(obj) := Closed
END;

setBState(obj, newBState) =̂
PRE

obj ∈ barrier
∧ newBState ∈ bSTATE
THEN

bState := bState ⊳− {obj 7→ newBState}
END;

res ←− getBState(obj) =̂
PRE

obj ∈ barrier
THEN

res := bState(obj)
END;

obj ←− createBarrier =̂
PRE

barrier 6= BARRIER
THEN

ANY new
WHERE new ∈ BARRIER − barrier
THEN

barrier := barrier ∪ {new}
‖ bState := bState ∪ {new 7→ Opened}
‖ obj := new
END

END;

supBarrier(obj) =̂
PRE

obj ⊆ barrier
THEN

barrier := barrier − obj
‖ bState := obj ⊳− bState
END

END

Fig. 13 Formalization of classes (machine Barrier)

measure code generation is feasible, and what adaptations to the process need to
be made in order to be able to generate code from UML specifications.

7.4.1 Classes

Consider the classBarrier and its first B specification, presented in Fig. 13.
Since a class includes both the static and dynamic properties of a set of objects,
it seems natural to model it using one abstract machine. The resulting abstract
machine Barrier describes the deferred setBARRIER of all the possible instances
of the classBarrier . The set of existing instances is modelled using a variable
barrier constrained to be a subset ofBARRIER.

Each attribute (i.e.,bState) is represented by a variable (i.e., bState) defined in
theINVARIANT clause as a total function between the set barrier and its associated
type (i.e., bSTATE). Each operation of the machine has at least one parameter
obj representing the object on which the operation is called. It may have a list of
typed arguments args, which will be completed in the later translation of the state
diagrams and OCL constraints.

7.4.2 Formalization of state diagrams
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State diagrams are used to introduce the behavioral (i.e., dynamic) properties
of the system into the B specification. The set of all possiblestates of a class is
formalized using an abstract set that is defined in the corresponding B machine.
An abstract variable is used to reference the current state of the class objects. This
variable is defined as a total function, whose domain is the set of instances and
whose range is the set of possible states. Each transition between two states is for-
malized by a B operation, whose name is that of the incoming event. Whereas the
precondition of the operation is deduced from the transition guard, the postcondi-
tion describes the transition to the new state. Let us consider the state diagram of
theLCC System class shown in figure 3: the transition from theshowingYlight
state to theclosingB state activated by the eventtimeOut 1 is formalized as
shown in Fig.14. Note that we have included some informationobtained from the
OCL definition of the operation closeBarrier, since this operation is activated by
the eventtimeOut 1. (The OCL translation is described below.)

When the same event can activate two different transitions depending on the
guard condition, then both transitions are formalized by the same operation of the
B machine. The non-deterministic constructionSELECT is used to describe each
transition, as illustrated in Fig.14 for the formalizationof the eventtimeOut 2.
The time constraints (not shown in the example, see reference [35] for details)
are handled in the precondition by checking the value of a clock variable defined
in a abstract clock machine. The progression of time is addedto the body of the
operations, by calling the relevant operation of the clock machine with a value of
time progress. This value can be made indeterministic by using the “unbounded
choice” construct of B.

MACHINE LCC_System
...
OPERATIONS
...
timeOut_1(obj) =̂

PRE
obj ∈ lcc
∧ state(obj) = YellowLightOn
∧ bStatus(lcc_sensor(obj)) = Opened
∧ bState(lcc_barrier(obj )) = Opened
∧ Red.lState(redLight(obj)) = Off
∧ Yellow.lState(yellowLight(obj )) = On
THEN

state(obj) := ClosingB
‖ closeBarrier( lcc_barrier (obj ))
‖ Yellow.switchOff(yellowLight(obj ))
‖ Red.switchOn(redLight(obj))
END;

timeOut_2(obj) =̂
PRE

obj ∈ lcc
∧ state(obj) = ClosingB
∧ bState(lcc_barrier(obj )) = Closed
∧ Red.lState(redLight(obj)) = On
∧ Yellow.lState(yellowLight(obj )) = Off
THEN

SELECT bStatus(lcc sensor(obj))=Closed
THEN state(obj):=ClosedB
‖ mode(obj):=Safe

WHEN bStatus(lcc_sensor(obj))=Opened
THEN state(obj):=Failure
ELSE skip
END

END;
...
END

Fig. 14 Formalization of state diagrams

Once the classes and state diagrams have been translated andintegrated into
the initial specification, OCL constraints are used to complete the B machine in-
variants and operations.
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7.5 Formalization of OCL constraints

In this section, we explain how OCL expressions are translated into B expres-
sions, using the rules defined for the OCL meta-model in Marcano’s PhD disserta-
tion [26].

The Object Constraint Language has thus far been defined semi-formally using
textual descriptions, a grammar that specifies the concretesyntax, and examples
that illustrate the semantics of the expressions. Such a presentation style is ade-
quate for illustrating OCL concepts, but it is not sufficientfor providing a rigorous
semantic. This semi-formal nature of the OCL definition, which often leads users
to interpret the UML models ambiguously, restricts its use in critical safety appli-
cations. This difficulty is increased by the lack of tools supporting the analysis of
OCL expressions and the "proof" of complete UML models.

Recent work proposing a precise semantic for OCL has been carried out by
Richters and Gogolla [48]. In addition, both these authors [49] and Jacksonet
al. [23] have published research related to tools for verifyingUML designs. The
first publication proposes an approach for validating UML models using simula-
tion, and the second proposes an object model analyzer that uses Alloy, which is
based on Z. Two of the authors of the present paper have also previously worked
to formalize OCL with B, using a system of translation rules between the abstract
syntaxes of both languages [32].

In the BRILLANT plug-in, two types of OCL constraints are taken into ac-
count. The first type of constraint specifies an invariant of aclass, and the second
type specifies a precondition and/or a postcondition of an operation. In the first
case, translating the OCL constraint consists of combininga new predicate with
the invariant of the related B machine, whereas in the secondcase, it requires com-
pleting an operation of the machine. The formalization of the LCC system’s OCL
invariant is shown in Fig.15.

MACHINE LCC System
CONSTANTS Activated
PROPERTIES Activated ∈ STATE ∧ Activated={YellowLightOn,ClosingB,OpeningB,ClosedB}
INVARIANT
...
∀obj.(obj ∈ lcc ∧ bState(lcc_barrier(obj))=Closed⇒ Red.lState(redLight(obj))=On)
∧ ∀obj.(obj ∈ lcc ∧ bState(lcc_barrier(obj))=Closing⇒ Red.lState(yellowLight(obj))=On)
∧ ∀obj.(obj ∈ lcc ∧ Yellow.lState(yellowLight(obj))=Off ∧ Red.lState(redLight(obj))=Off

⇒ bState(lcc_barrier (obj))=Opened)
∧ ∀obj.(obj ∈ lcc ∧ objdom(lcc_train)⇒ state(obj) ∈ Activated)
∧ ∀obj.(obj ∈ lcc ∧ state(obj)=Activated ∧ bStatus(lcc_sensor(obj))=Opened⇒ mode(obj)=Unsafe)
∧ ∀obj.(obj ∈ lcc ∧ bStatus(lcc_sensor(obj))=Opened ∧ bState(lcc_barrier(obj))=Closed⇒ mode(obj)=Unsafe)
...
END

Fig. 15 Formalization of OCL invariants

In the same way that OCL predicates enrich the UML model, OCL pre- and
post-conditions are used to enrich B machine operations. InFig.14, the pre-condition
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of the operationtimeOut 1 not only requires that the LCC system be in theyellow-
Light state (which is generated from the state diagram) but also that the red light
be switched on and the barrier be closed. These three contraints together consitute
the translation of the OCL predicate:

self.yellowLight.state=On and self.theBarrier.state=Opened.

The post-condition of the operation initially includes only the substitution
state(obj):=ClosingB that sets the new state of the LCC instance (obj). This
post-condition is completed by translating the OCL post-condition

self.yellowLight.state=Off and self.redLight.state=On and self.theBarrier.state=Closed

into B, which generates the following parallel substitutions:
closeBarrier (lcc barrier(obj))

|| Yellow.switchOff (yellowLight(obj))
|| Red.switchOn (redLight(obj))

Please note that although OCL constraints can be sufficient for expressing the
behavior of the model, it can be very difficult to extract thisbehavior in order to
express it in terms of B operations. Thus, state diagrams arenecessary to provide
the skeleton for the behavior, upon which additional information can be imported
from the OCL pre- and post-conditions.

7.6 Verification of the entire model

In order to automate the formalization process, we implemented a prototype tool
that derives B specifications from UML/OCL models. The strength of this tool is
that it does not depend on any UML modelling tool. Instead, itdoes the translation
using XMI files (i.e., files in an XML format describing a UML architecture) as
input. As a result, this tool can still be used even if UML modelling tools change
their Application Programming Interface.

Once the whole B formal specification has been generated fromthe UML/OCL
model, it has to be type-checked and then verified through a proof process. A ded-
icated tool is then used to automatically generate and provethe proof obligations
(POs). The POs guarantee that the B machine’s operations conform to its invariant.
Each operation raises proof obligations related to its pre-condition and substitution
parts. The non-proven POs are used to detect inconsistencies between the invariant
and the preconditions, as well as to detect the incompleteness of a post-condition.

If a proof obligation cannot be proven using the theorem prover, then the devel-
oper must review the related OCL invariant or operation and make the necessary
modifications to allow the obligation to be proved. Our approach is a one-way ap-
proach: it allows UML/OCL to be translated into B, but not theother way round.
When the type-checker or the prover finds an error in the specification, the user
must first understand the B specification and then search in the UML/OCL model
to find the error. Please note that it is quite simple for the developer to find the UML
element associated to a B expression because the names are roughly the same and
each OCL expression is translated into a simple B expression. Thus, in order to
facilitate the task, we have made it possible to create and maintain concrete links
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between the UML/OCL models and B specifications throughout the development
process.

8 Discussion, conclusion and perspectives

8.1 Comparison with other works

Several other formal methods also employ the same kinds of tools, and were devel-
oped similarly to use either open-source high-level languages or formats, or both.
Many of them can be found in the www formal methods’ virtual library [21], along
with links to the formal methods they implement. In addition, freely available (but
not open-source) tools exist for the Bmethod: B4Free [4] (distributed byClearsy)
and ProB [47]. The former is a parser, type-checker, proof obligation generator
and prover programmed in the B0 language. The latter is an animator and model-
checker programmed in Prolog, and uses the XML files producedby the jBTools
[25] as input.

BRILLANTcan also be compared to projects of a similar nature, that have simi-
lar ambitions and/or designs: Rodin [51] (forB#), Overture [38] (for VDM++) and
the Community Z Tools [17] (CZT). These projects share several common points.
For example, they all use XML-based interchange formats, and they all have simi-
lar architectures, in which the core tools (e.g., parsers, typecheckers, testers/valida-
tors, plug-ins and/or plug-outs) are clearly separated. Some are driven by research
needs (BRILLANT, CZT), some by industrial interests (Rodin), and some by both
(Overture).

However, despite their similar architectures, the tools’ underlying implementa-
tions are quite different. Rodin and Overture are based on the Eclipse IDE [20] and
thus provide a very consistent development environment. Writing the mandatory
parts of such a framework (e.g., parsing, compiling, graphic interfaces, test suites)
is therefore more scalable and reusable, if not any easier.CZT andBRILLANT,
on the other hand, are more or less a loosely connected set of tools: the first was
developed using Java (their edition of Z specifications is even supported by jEdit),
while most of theBRILLANTtools were developed in OCaml.

BecauseCZT andBRILLANT appear to have more points in common, it is
appropriate to focus this comparison on them.BRILLANTwas developed before
the others, although the ideas behindCZT appeared around the same time1.

The developers ofCZT have provided information about the design decisions
behind their tools. In the following paragraphs, these decisions are analyzed by
comparing them with similar decisions that have been made atone time or another
during the development ofBRILLANT. (All citations come from reference [17].)

BCaml, BRILLANT’s most important tool, uses what inCZT terminology [17]
is called an immutable type, which helpsBRILLANT to avoid the problems de-
scribed by the developers ofCZT. Initially, these developers implemented a "mu-
table" Abstract Syntax Tree (AST) approach, then moved to a combined approach

1 A sketch of a formal developement platform can be found in reference [36], ch-2, p-29,
published in 1997. The CZT initiative was launched around September 2001
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called "a ’Both’ approach", but finally ended up shifting gradually towards an "im-
mutable" approach. This means that, initially, the AST (i.e., the type representing
the Z specifications) could be modified during tool execution, which allowed more
efficient algorithms to be used, but made the sharing of common subtrees (i.e.,
common pieces of specifications) difficult. In addition, given the initial “mutabil-
ity” of the AST, the programmers had to ensure that it did not change during certain
specific parts of the execution, which required a comprehensive knowledge of the
overall tools. The ’Both’ approach tried to combine the advantages of the mutable
approach and the immutable approach, but only succeeded in increasing complex-
ity. CZT has now moved towards the immutable approach, both because it is less
error-prone and because it makes things simpler for the developer. Thus, by using
OCaml,BRILLANTavoided the pitfalls of optimization for the immutable typeof
the AST. This made sense to us for 2 reasons: 1) the literatureusually advocates
using a static tree to represent abstract data structures, and 2) the OCaml language
actually encourages such an implementation.

When developingBRILLANT, we wanted to make it possible to add B-HLL
to BCamlat some later date, which required insuring identifier unicity. TheCZT
developers also faced this problem, which arises when an abstract structure de-
fines binders, either as universal or existential quantifiers in predicate calculus, or
as local vs. global variables in programming languages. InCZT, three common
solutions to this problem were tried: renaming bound variables when necessary,
which is a traditional solution, but one that makes it “incredibly easy to make
subtle errors”; using De Bruijn indices, which is “easier toget right”, but leads
to unreadability and complexity; or using unique names for all bound variables,
which is safer, but requires unique names for all models of a Zproject, and ends
up making the output less readable. They finally chose the last solution forCZT,
with the additional benefit that the unique attributes of theidentifiers could be ex-
ported in the XML AST in order to use the ID/IDREF (unique identifiers/symbolic
link to unique identifiers) standard attributes. ForBRILLANT, we chose a similar
solution inBCaml: we decided to institute a scoping phase after the parsing phase
in order to associate each identifier with a unique identity.Later on, the processing
of new variables was facilitated not only by that unicity, but also by the recursive
nature of the syntax trees, which allows all free variables to be retrieved. Indeed,
several libraries that provide functions for high-level data structures (e.g., lists,
sets, hash tables) exist in OCaml: and we were able to benefit from using these
libraries immediately.

Another frequent problem is slow processing times. However, both teams man-
aged to avoid this problem: like the tools inCZT, theBCamltools inBRILLANT,
interact via the abstract syntax tree directly instead of XML exchange files, which
speeds up the processing.

All the above problems have been described in publications dealing withOver-
ture [38], although the problem seems to have been more connectedto their choice
of compiler generator than to the compilation technique itself. Since the Rodin
project is still in the development stage, we would encourage its developers to
look at the projects discussed above, among others, in orderto benefit from their
experience.
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From our perspective,BRILLANThas a very relevant process for developing
for formal methods. Implementing the B method with our toolshelps to highlight
the weaknesses of the mathematical definition of the method,such as the lack
of documentation for handling variable instanciations in the weakest precondition
calculus, or shortcomings of its more technical definition,such as the problem
of parsing B models with standard Lex and Yacc tools. Moreover, like UNIX,
BRILLANTadheres to a philosophy of separate but interconnected tools. Not sur-
prisingly then, the consequence is that extensions and extra tools are easily added
to the platform. From that perspective, we think thatBRILLANT is a more than
adequate tool. Since most development projects are done by PhD students and
young interns who are not yet full-time engineers, the simplicity of programming
language chosen forBRILLANT (OCaml) is a definite plus. Its powerful, well-
documented, high-level libraries, and its ability to blendvarious programming de-
sign paradigms, already well-known in the academic scientific community, make
it a most appropriate choice. In addition, the by-the-book formalism implemented
in BRILLANTmakes integrating extensions, such as the B-HLL module system,
much easier than the other possibilities.

8.2 Conclusion

The BRILLANTplatform design has two principal advantages: it uses open and
standardized formats, and the source codes for its tools (OCaml and/or Java so
far) are openly available. In addition, it can be used to testand/or validate B-
related experiments, and in fact, we were the first users of many of the prototypes
now available for the platform (e.g., bparser, bgop, btyper, bphox). We have been
working to finetune the platform to help it meet the needs of other theoretical
research projects, including but not limited to extending the B language, improving
the current tools, providing couplings with other provers (e.g., Coq, Harvey), and
offering other validation formalisms (e.g., model-checking).

From the information presented in this article, it would appear that we have
reached our goal of providing an open and standardised format (XML) for a plat-
form that has become a testbed for several other fundamentalresearch projects
(e.g., UML/OCL/Bcoupling in section 7, proofs in section 5,code generation in
section 6). All the source code examples in the article (i.e., B machines, logical for-
mulas, XML, PhoX) either come fromBRILLANT, or derive from its use: The B
machines are LATEX files in theBRILLANTstyle, and the LATEX files were obtained
by applying an XSL stylesheet to XML abstract machines, themselves obtained by
parsing ASCII B machines.

The following table provides some figures about the size of the project:
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Component Lines of code Comments

kernel 8900
parser 3200
type-checker 12500 (it has some duplicate code with

the kernel)
PO generator 4000 (GSL libraries included)
flattening tool 1700
bhll 2400
bphox 4200 (PhoX libraries and stylesheets)
uml plug-in 20300

8.3 Perspectives

In the future, we will work to integrate technologies that endorse the use of open
formats into theBRILLANTplatform. The following modifications are planned:
the use of XML schemas [53] instead of DTDs for validating XMLfiles; the
use of some recent promising results to replace XSLT processors with OCaml-
Duce[37]; the use of XML flexibility to increase traceability between UML mod-
els, B machines, proof obligations and other derived models(e.g., generated code,
test cases); the representation of B models as projects databases using XPath and
XML-Query [16]; and a distributed platform architecture using XML-RPC [55],
which will allow the parser and prover to be represented as servers to which B
projects can be sent for parsing, validation or other tasks (in a kind of "B-forge").

We also plan to finalize the integration of ABTOOLS [10,9] within BCaml.
Now part ofBRILLANT, both of these tools were initially developped indepen-
dently. ABTOOLS, which provides an open environment based on ANTLR and
JAVA, makes it easier to design and test extensions of the B language. Lastly, we
hope to define an ergonomic interaction mode for the various platform tools, by
proposing a graphic interface suitable for the underlying platform technologies.
This interaction will, consequently, rely heavily on XML technologies.

Several other projects, these more related to the fundamental research currently
under way, also offer interesting perspectives for the future, such as UML/OCL/B
coupling [33], temporal extensions for B [14], and safe software component gen-
eration [42]. Much work remains to be done, and the platform developers will be
happy to provide their assistance to those who would like to try to use the tools in
the context of their own research. All the necessary resources for buildingBRIL-
LANT should be available on the web site dedicated to collaborative free software
development [12].
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