
BRILLANT :
An Open Source and XML-based platform for Rigourous Software Development

Samuel Colin∗, Dorian Petit∗, Jérome Rocheteau†, Rafaël Marcano†, Georges Mariano†, Vincent Poirriez∗

∗

LAMIH/ROI, UMR CNRS 8530
Université de Valenciennes et du Hainaut Cambrésis
Le Mont Houy
F-59313 Valenciennes Cedex 9, France
Email: Firstname.Lastname@univ-valenciennes.fr

†

INRETS-ESTAS
National Institute for Transport and Safety Research
20 rue Elisée Reclus - B.P. 317
F-59666 Villeneuve d’Ascq, France
Email: Firstname.Lastname@inrets.fr

Abstract

The need for the B method first appeared in industry, and
several commercial tools have been developed to support this
formalism. However, few of these tools allow reasoning on
the formalism itself or on its possible extensions. This article
presents an open-source platform, with a focus on the plat-
form’s core component, theBCaml project. The tools pre-
sented here are used to show how very different approaches
can be brought together around a central design to form a
consistent toolbox, and can be used to develop safe systems,
from their specifications to their validation and the genera-
tion of safe code.
Keywords: B method, tool support, UML modelling, XML,
proof tools, code generation

1. Introduction

During the last decade of the previous millennium, theo-
retical research produced the B method, which is based on
the same fundamentals as Z [8] and VDM [29].

This method reconciles the pragmatic constraints of the
industrial development of critical software with the strict the-
oretical requirements that are inherent to mathematical for-
malism. The B method is one of the rare successful formal
methods used in industry, and supports multiple paradigms:
Substitutionsas a means for describing dynamic behaviour
naturally; Formulasin a simple yet efficient logical frame-
work (set theory);Composition mechanismsthat simplify de-
velopment;Refinementsproviding a safe and efficient way to
obtain secure computer code from abstract specifications

The B method was used in the METEOR project [4], as
well as in less well-known development projects [10, 13] and
even non-critical development projects [40].

The software industry adopted B largely because of the
availability of software tools supporting all phases of the
B development process (semantics verification, refinement,
proving, automatic code generation). Unlike most software

tools, these resulted from prototypes developed by industry
rather than by the academic community. In fact, from 1993
to 1999, the Atelier B development was funded by the "Con-
vention B ", which was a collaborative effort of the RATP
(Parisian Autonomous Transportation Company), SNCF (the
French National Railway Society), INRETS (the National In-
stitute for Transport and Safety Research) and Matra Trans-
port (now Siemens Transportation Systems), among others.

A computer scientist in the field of formal methods will
perceive certain paradoxes in the implementation of the B
method. For instance, the B method uses programming lan-
guages, such as Bkernel, that are not well documented or
specified and that are not particularly well-suited to B’s high
level of abstraction. However, these apparent paradoxes can
be explained by the industrial origins of the method. Still,
the fact remains that the industrial tools currently available
for B are often inappropriate for scientific research, and thus
do not provide effective support for efforts to extend the use
of the B method.

To remedy this problem, we present theBRILLANT [9]
framework, showing the feasibility of a safe software devel-
opment system that ranges from semi-formal specification
(UML) to contract-equipped code generation. This frame-
work provides a central core into which different components
can be plugged, including a central component, a UML plug-
in, a proof plug-out, and a code generator plug-out.

Section 2 presents the central component, which allows
the components of a B project to be manipulated. The pars-
ing of B machines is examined in section 2.1.1, highlighting
the central role of XML as an exchange format. Abstract
syntax tree manipulations, such as specification flattening,
are examined in section 2.2, and proof obligation generation,
in section 2.3 . Section 3 describes the UML plug-in used to
translate UML projects into B so as to validate them, as de-
scribed in Marcano & Levy [24] and Laleau & Polack [20].
Section 4 presents the proof plug-out used to validate B proof
obligations, and section 5 describes a code generator plug-
out capable of embedding contracts into the code and sup-
porting several target languages. An example of a railway



system design project now being studied [25] is used to il-
lustrate these components. Section 6 presents our conclusion
based on the results of our experiments with the implemen-
tation and use of theBRILLANTplatform.

2. The BCaml Kernel

In this Section, we describe the three component parts of
BCaml: a parser (with an XML output library to connect
BCaml with the outside world), libraries to handle the mod-
ularity of B projects and a proof obligation generator.

2.1. BCaml input and output
The kernel of the Bcaml platform is made up of the first

bricks that were developed when the platform was created.
These bricks specify the concrete grammar (section 2.1.1)
that defines the B language and the abstract syntax (sec-
tion 2.1.2) that defines the type used to manipulate the spec-
ifications. This may seem obvious, but it is nonetheless im-
portant because it makes collaboration with other developers
possible. One of these collaborative projects led to the de-
velopment of another brick in the BCaml kernel, called the
Btyper. This brick is not described in this paper, but more
details can be found in Bodeveix & Filali [6].
2.1.1. A concrete grammar for B:Several B grammars have
been introduced over the years, coming from a variety of
sources:Clearsy (prev. Steria), which corresponds to the
grammar used inAtelierB; B-Core, which corresponds to the
grammar used inB-Toolkit; and Mariano’s PhD dissertation
[26], based on the B-Core grammar, which was introduced to
do metrics on B specifications.

In order to build a tool that would be as useful as possible,
we needed to define a grammar that would take into account
the remarks made about the grammars presented above. Our
BCamlchoices had to respect the following constraints:
• they had to be as compatible as possible with the machines
that can be correctly parsed by the commercial tools (Ate-
lierB, B-Toolkit) mentioned above,
• they had to comply with the standardLex andYacctools
that allowLALRgrammars to be defined, and
• they had to cause as few conflicts as possible.

We chose OCaml as a supporting tool for our B develop-
ments for several reasons. First, it allows symbolic notations
to be handled easily. In addition, it has an efficient imple-
mentation, and comes bundled with tools that allow the pars-
ing of LALR grammars. Using this tool, we defined the B
language in LALR. Some of the problems we encountered in
doing so are described below.
Peculiarities in the parsing of B machines:Certain B lan-
guage features made defining an adequate grammar for the B
method difficult, including:
• The records, whose; separator causes a conflict with the
currently used separator for defining the sequence of two

substitutions. We decided to give priority to the correct pars-
ing of substitution sequences, to the detriment of a correct
parsing of records.
• The definitions, designed to lighten repetitive, cumbersome
notations, which cause a partial conflict with theLALRgram-
mars. We decided to not expand the definitions and to keep
them in the abstract syntax trees used in the original text, re-
stricting the definitions to a subset that is expressive enough
to allow them to be implemented with theLALRparser with-
out losing too much of their usefulness.
• Several so-calledreduce/reduceandshift/reduceconflicts,
that represent ambiguous notations. We decided to remove
the reduce/reduceconflicts, but to defer our decision about
theshift/reduceconflicts.
2.1.2. Abstract syntax and XML syntax—two isomorphic
formats: We used our definition of abstract syntax to di-
rectly infer an XML representation for B formal specifica-
tions. (Due to lack of space, this abstract syntax is not de-
scribed here.) This XML encoding is called "B/XML" and is
stored in an XML DTD file.

Such abstract syntax is, as could be expected,
more tolerant than concrete syntax, and contains ele-
ments that facilitate the handling of the syntax struc-
ture. For instance, the[substitution]predicate and
[variable instanciation]substitutionconstructions appear in
this abstract syntax, which means that the structure can be
manipulated to bring it closer to the matching mathematical
definitions given in the B-Book [1].

We chose XML as our pivot format because of its flexibil-
ity and its ease-of-use with third-party tools. Using it makes
our tools as independent of one another as possible, allowing
a researcher to use our parser, but someone else’s proof tool,
for example. This flexibility is due to the XSL style sheets
that formulate simple recursive treatments of the XML struc-
ture, mostly transformations into other structured formats
(LATEX, HTML, or PhoX, as mentioned in section 2.3.3).

2.2. Abstract syntax tree manipulation
2.2.1. The flattening algorithm:
Overview :Flattening B specifications consists of eliminat-
ing the refinement and the composition links. The flattening
algorithm uses one set of B components to build a single B
component equivalent to the original set of B components.
All the information for the different specifications are then
grouped in one formal text.

This notion of flattening exists implicitly in the BBook
[1]. Potet and Rouzaud used the term "flattening" in
their work [36], but it was S. Behnia [5, PhD dissertation,
in french] who specified the algorithm entirely, and it is this
specification that we used in our tool. The principle of the al-
gorithm is to connect the specification from the leaves (where
only theIMPORTS andREFINES links are taken into account) to
the root machine of the project.



The enrichment mechanism:Our flattening tool uses an en-
richment mechanism that combines two specifications in
one specification. This enrichment mechanism is described
briefly below. (More details can be found in Petit [30])

Refinement:In REFINES links, flattening consists of com-
bining some clauses (SETS, CONSTANTS PROPERTIES) and using
the more concrete parts of the specifications for other clauses.

For example, let us consider an abstract machine M and its
refinement R. LetVarM (respectivelyVarR) be the variables
of the machine (the refinement) andInvM (InvR), the invari-
ants of this machine (this refinement). The variables of the
flattened component are the variables of the refinement, but
these variables are renamed if the same variable name exists
in the more abstract component. In this case, a gluing invari-
ant is added, and the new variable name is propagated. Let
VarR 1 be this new variable clause, andInvR 1, the invariant
in which the variables are renamed. Thus, the invariant of
the flattened component is∃VarM.(InvM∧ InvR 1) . Every
specification property follows the same schema, in which the
abstract variables are existentially quantified because they
disappear in the flattened component.

Importation: In the IMPORTS links (as in theINCLUDES
links), flattening consists of merging some clauses (SETS,
CONSTANTS PROPERTIES, INVARIANT, INITIALISATION), instan-
tiating the parameters in the imported machine, and then ex-
panding the operation of the machine called in the implemen-
tation phase.

Implementation:The flattening tool was the first tool im-
plemented after designing the BCaml kernel (section 2). One
of the aims of this implementation was to “evaluate” the ker-
nel’s usability and to add to the platform those tools/libraries
that would be useful for manipulating B specifications.

First, the specification dependency graph had to be made
manipulatable, since it is necessary to navigate through the
specifications in order to build the successive flattened com-
ponents. Therefore, we developed a library called BGraph
that implements the dependency graph type and the functions
needed to manipulate that graph.

Second, it was necessary to verify all the conditions that
allow a set of B components to be flattened. The total imple-
mentation of the flattening tool (condition verification + al-
gorithm implementation) requires about 3000 lines of OCaml
code.
2.2.2. The B-HLL module system:
Overview: The Harper-Lillibridge-Leroy module system
(HLL) presented in Leroy [21] formalises the Standard ML-
like modules. The HLL system provides a means for adding
a module language to a module-less core language. This sys-
tem also permits a formal semantic to be given to an exist-
ing module language, as was the case for the ML modules.
Moreover, this powerful semantic is able to implement the
module language with relative simplicity.

Once the HLL module system has been instantiated, it is

possible to define structures (i.e. list of values, types or (sub-
)modules) and functors (functions from modules to modules)
in the obtained modular language.
Instantiation:A more complete description of our work on
B-HLL can be found in one of our previous articles [33]. Our
efforts to instantiate the HLL module system were divided
into two parts. The first part involved defining the abstract
language of the B-base language under study, based on the
abstract syntax defined during the development of the BCaml
Kernel. From this abstract syntax, we removed the part ded-
icated to the modularity languageand then we developed a
mapping function from the BCaml kernel abstract syntax to
our new abstract syntax.

The second part of the instantiation involved defining the
type checker. The types and the type-checking algorithm we
used were adapted from the work of J.P. Bodeveix and M.
Filali [6] . We added some type-checking rules to express
the visibility rules described in the B-Book [1], and we also
defined type checking rules that take into account B language
particularities, such as the semi-hiding principle and thepro-
hibition of calling a given operation in the component where
that operation is defined.

To translate the visibility rules, we had to divide the
classes of things that can be defined in a B specification into
several sub-classes. For example, the substitution construc-
tions were divided into B0 substitution and non-B0 substitu-
tion. This sub-division allowed us to express certain rules,
such as "an abstract variable can not be used in a B0 substi-
tution, but can be used in the other substitutions".

The B to BHLL tool that translates the specification from
the kernel’s abstract syntax into our B-HLL syntax also gen-
erates four interfaces for each B component. Each of these
interfaces is used to simulate the four composition links un-
der study: INCLUDES, IMPORTS, SEES and USES. By generat-
ing these interfaces, we can translate the visibility rulesthat
make up the B module language.

2.3. Generating proof obligations
In this section, we first describe the method used to imple-

ment the actual calculus for the weakest precondition. Then
we show how it can be used to generate a B project’s proof
obligations. We then present the different options available
for exporting these proof obligations to other formats and
other tools.
2.3.1. Generalised Substitution Language (GSL):In order
to generate proof obligations for B machines, we must be
able to calculate the weakest preconditions of the substitu-
tions. We chose to use the approach defined in the B-Book
[1] by reducing B substitutions to their smallest syntacticand
semantic set (i.e. generalised substitutions). In the following
paragraphs, we will use GSL to designate both the syntactic
set and the substitutions that occupy it. We define theGSLin
BCamlas an abstract data type, as is described in the B-Book
[1, B.3], with some notable exceptions:



• The assignment is defined as a multiple substitution; it
serves as a basic construct once the parallel substitutions
have been reduced.
• The repetition substitution "̂" does not appear; we chose
instead to use thewhile substitution, since it does not exist in
the loop proof rules [1, E.7].
• The instantiation of a substitution variable
([variable:=expression]substitution) is reduced beforetrans-
forming the substitution.

With the help of the abstract data type, proof obligations
can be generated according to the rules described in the B-
Book [1, appendix E]. The corresponding BCaml code was
written with readability in mind, making it easily matched to
the rule it is derived from.
2.3.2. Proof Obligation Generation: The main steps for
generating proof obligations from a project can be divided
into precise steps which are described in more detail below:
Parsing:First, the machine and all the machines it depends
on are parsed. This parsing phase is followed by a scoping
phase in which all unique identifiers that represent the same
variable name, machine name or operation name are made
equal. In fact, prior to the parsing phase, each identifier isas-
sociated with a unique stamp; however, when the parsing is
finished, all the identifiers have different stamps. The scop-
ing phase acts to make the stamps for those identifiers repre-
senting the same variable, machine or operation name equal
with respect to visibility.
Generation of formulas:This step is based on the B-Book [1,
appendix F] , resulting in proof obligations with the follow-
ing shape:
[Instanciation]Hypothesis⇒ [Substitution]Goal.
This generation method allows more handling flexibility later
on, for instance during debugging, or when showing students
how proof obligations are generated, or when the proof tool
applies the substitution to the goal. Bodeveix [7]shows for
instance how substitutions can be defined in Coq and PVS.
Figure 1 shows an example of such an uncalculated proof
obligation, derived from the B project presented in section3.
Optimisations:Several additional optimisations, or treat-
ments, can be applied to the generated formulas. For exam-
ple, formulas can be calculated, resulting in predicates that
contain no substitutions. It is also possible to split the goal,
by splitting the formula into as many formulas as there are
members of the conjunction in the goal:
(H ⇒ G1∧ . . .∧Gn) ; (H ⇒ G1), . . . ,(H ⇒ Gn)
Other possible, but not implemented, optimisations, include
removing formulas when the goal is trivially true or appears
in the hypotheses, or changing the shape of the formula to
adapt it to a precise theorem prover. Certainly, it is some-
times easier to apply such transformations to the abstract syn-
tax tree than to XML files using stylesheets.
Final files and trace information:Once the formulas have
been generated, some trace information is embedded into the

(LCC∈ P1(IINT)
∧ STATE∈ P1(IINT)
∧ STATE ={Deactivated,

ShowingYlight,ShowingRlight,
ClosingB,OpeningB,ClosedB,Failure}

∧ . . .
∧ Yellow.lState(yellowLight(obj)) =On)⇒

[ state(obj) :=ShowingRlight
|| Yellow.switchOff(yellowLight(obj))
|| Red.switchOn(redLight(obj)) ]

( lcc⊆ LCC
∧ lcc_barrier∈ lcc→barrier
∧ . . .
∧ ∀obj . ( obj∈ lcc
∧ bStatus(lcc_sensor(obj)) =Opened
∧ bState(lcc_barrier(obj)) =Closed⇒

mode(obj) =Unsafe) )

Figure 1. Uncalculated proof obligation for the
timeOut 1 showRlight operation

resulting file. Trace information can be found in the abso-
lute name of the file, which reflects the kind of proof obli-
gation it is, and the machine from which it is generated.
The XML information in the file contains not only the pred-
icate itself, but also a root tag named (for obvious reasons)
ProofObligation. In addition, the file contains a tag con-
taining all the free variables of the formula because some the-
orem provers requires all variables be bound. This tag helps
the stylesheet generate a file for such a theorem prover more
easily.

2.3.3. Exporting to other tools:Once the proof obligations
in the XML format are available, the XSL style sheets allow
them to be exported to other tools. For instance, the proof
obligations can be transformed into LATEX files (figure 1 is an
example of the results obtained), into text files, into HTML
files which improve the readability of the formulas, or into
BPhox files which allow the proof obligations to be verified.

Figure 5 in section 4.2 presents an example of an XSL
stylesheet application for the proof obligation shown in fig-
ure 1. First, the header of the file is inserted, which provokes
the loading of the appropriate PhoX library and finetunes the
power of the prover (theflag commands). Then, the free
variables of the formula (the identifiers after the/\ quan-
tifier) are quantified. The formula itself is inserted in the
BPhoX syntax, by replacing the conjunctions of the hypothe-
ses by implications, in order to facilitate the work of PhoX.
Finally, the command that is given to the prover is added to
start the proof (Try intros ;; auto.). In the next step,
the theorem prover is fed the generated proof obligations file
(see section 4).

All of these steps (including the replacing of the con-
junctions in the hypotheses with implications) are done by
the XSL stylesheet, demonstrating thead hocquality of this
technology designed for simple treatments involving recur-



XSLT
(xmi2uml) XML

UML types
(AST)

IOXML 
processor

UML-parsed
model

UML/OCL 
model

B-parsed
specification

Translation
(uml2b)

(model.xmi)

(uml.ml)

(model.xml)

(model.ml)

B types 
(AST)

(b.ml)

1

2

3

Figure 2. The proposed process

sivity.
Now that we have presented the BCaml core, we can

present the different plugins/plugouts revolving around it,
starting with a translator from UML/OCL specifications to
B.

3. From UML/OCL models to B specifications
The different plugins/plugouts mentioned in the introduc-

tion revolve around the BCaml core described above, starting
with a translator that changes UML/OCL specifications to B
specifications. Our work continues the work begun by Mar-
cano & Levy [24] on combining UML and B for consistency
checking, while also taking OCL annotations into account
[27]. Adding OCL constraints is a useful way to capture the
key safety properties of the system being constructed. The
main purpose of our work is to facilitate the construction of
a B formal specification, using automated tool support. Our
process, which is shown in figure 2, breaks down into the
three steps described below:
From UML to XML: The Poseidon [35] modelling tool
was chosen for drawing the UML model and generating
its associated XMI file (model.xmi). A transformation file
(xmi2uml) is written in the XSLT language to translate the
XMI file into a XML file (model.xml) that represents the
original UML file (hence, the name xmi2uml rather than
xmi2xml).
From XML to UML-parsed models:The IOXML processor
parses UML models elements of the XML file into OCaml-
compliant data types accordingly to the UML abstract syn-
tax tree definition (uml.ml). Therefore the resulting file
(model.ml) can be used to generate the B specification.
From UML models to B specifications:The uml2b module
translates UML classes, state diagrams and OCL constraints
into B specifications. The translation rules are implemented
in OCaml as mappings of the UML abstract syntax (uml.ml)
into the B abstract syntax (b.ml).

We chose to connect the tool directly to the abstract syn-
tax tree of BCaml rather than producing B concrete speci-
fications in order to obtain a smoother integration for both
tools. Though the same programming language is employed
(OCaml), it is still possible to produce B concrete specifica-
tions by using the XML output plus a stylesheet to generate
B ASCII files.

Activated

Deactivated

Failure

trainDetectionEntry
/ yellowLightOn()

Closing
Barrier

Yellow
LightOn

ClosedClosed

Opening
Barrier

Opening
Barrier

timeOut_1 / redLightOn()

[bSensor.status=Closed]
/ setMode(Safe)

trainDetectionRear
/ openBarrier()

repair

deactivate

timeOut_3

failure

Red
LightOn

[bSensor.status=Opened]
/ setMode(Unsafe)

timeOut_2 
/ closeBarrier()

Figure 3. State diagram of the LCC system

3.1. UML-based modelling
In this section, the construction of a B specification from a

UML/OCL model is illustrated using the example of a radio-
based Railway Level Crossing (RLC) [16]. (A complete de-
scription of the traffic control system considered here can be
found in Jansen & Schnieder [18]).
3.1.1. Class and state diagrams:The Level Crossing Con-
trol system (LCC) controls the traffic lights and barriers ofa
level crossing. It interacts with the vehicle sensors, the train-
borne control system and the operations centre. When the
system is activated at the approach of a train, it must per-
form a series of actions, as illustrated by the state diagram
in figure 3. Several actions have specific timing constraints:
for instance, switching from yellow lights to red lights shall
happen after 3 seconds. In figure 3, time expirations follow-
ing the LCC’s activation are denoted by the events prefixed
timeOut. A full class diagram of this system can be found
in [25].
3.1.2. adding OCL constraints:Without going into detail,
the OCL constraints helps specifying safety properties and
ensuring these properties are not lost between the abstract
specification and the implementation phases. These con-
straints are naturally found later in the invariant of the gen-
erated B machines. Additional OCL constraints also help
adding supplementary information that can not be found in
the state diagrams. For instance, the closeBarrier operation,
raised by the event timeOut2, is specified as follows:

context LCC System::closeBarrier
pre: self.yellowLight.state=On

and self.theBarrier.state=Opened
post: self.yellowLight.state=Off

and self.redLight.state=On
and self.theBarrier.state=Closed

3.2. Generating the B specification
The B specification resulting from the steps described

above is composed of abstract machines representing each
class. A root abstract machine specifies the whole system’s
structure and introduces all the associations between classes.
3.2.1. Formalisation of class and state diagrams:An ab-
stract machine formalising a class describes the deferred set
of all the possible instances of the class (i.e.BARRIER), as
well as the subset of its existing instances (i.e. barrier).Each



MACHINE
LCC_System

INCLUDES
Barrier, BarrierSensor, Yellow.Light,
Red.light, TrainborneCS

VARIABLES
barrier, bState

INVARIANT
lcc_barrier∈ lcc→barrier∧. . .

OPERATIONS

timeOut_1_redLightOn(obj) =
PRE

obj ∈ lcc ∧
state(obj) =ShowingYlight∧
bStatus(lcc_sensor(obj)) =Opened∧
bState(lcc_barrier(obj)) =Opened∧
Red.lState(redLight(obj)) =Off∧
Yellow.lState(yellowLight(obj)) =On

THEN
state(obj) :=ShowingRlight

|| Yellow.switchOff(yellowLight(obj))
|| Red.switchOn(redLight(obj))
END;
. . .

Figure 4. Formalisation of state diagrams

attribute is formalised by a variable defined as a total function
between the set of instances and the attribute type. Associa-
tions between classes are expressed in B as binary relations
between the existing class instances (figure 4). These rela-
tions can be expressed precisely by using the wide spectrum
of relation definitions in B, and by stating additional proper-
ties on their domains or ranges.

Each transition is formalised by a B operation whose
name is the name of the incoming event concatenated with
the name of the action. The precondition of the operation
is deduced from the transition guard and the substitution de-
scribes the transition to the new state.

3.2.2. Formalisation of OCL constraints: As depicted in
section 3.1.2, two kinds of OCL constraints make their way
into the resulting B project :

• The OCL constraints that specify class invariants are com-
bined with the invariant of the related B machines

• The OCL constraints that complete the information of state
diagrams are translated into B preconditions, for the pre-
condition part (see section 3.1.2) and B substitutions, such
as the predicate statement, for the postcondition part. For
instance, the call to red and yellow light operations from
thetimeOut 1 redLightOn operation has been obtained by
translation of the following OCL constraint’s postcondition:

self.yellowLight.state=Off and self.redLight.state=On
and
self.theBarrier.state=Closed

The closing of the barrier does not appear in this opera-
tion, but in anothertimeOut operation in order to conform
with the translation of the state diagram. In the next sec-
tion, we introduce B/PhoX, a proof plugout for theBRIL-
LANT platform.

4. From B proof obligations to correctness
The BCaml Kernel provides the first two important types

of B tools, presented in Abrial’sB# [2, section 4]. The first
includes the lexer, parser and typer and the second, the proof
obligation generator. The third and last important B tool is
the automatic, interactive prover. We chose not to develop
such a tool within BCaml for a pragmatic reason: building
a B prover takes much more time than developing dedicated
libraries in an already existing prover for B according to our
specifications. Instead, we built an add-on that can be re-
placed. We included the PhoX proof checker [34] because it
can be extended to the B mathematical foundations; its GPL
licence permits distribution with BCaml; its developers were
willing to work closely with us; and its highly intuitive syn-
tax minimises the libraries’ development time.

Our contributions to a PhoX-based B prover include a pro-
cess killer used to control the proof time, the B extension of
PhoX, the translation from B to the PhoX extension and the
B/PhoX GNU Make script that binds those tools together.

4.1. ThebphoxGNU Make script
A B prover must verify whether each proof obligation is

a theorem or not. In the BCaml context, every B/XML proof
obligation has to be translated into the PhoX syntax and has
to be proved. PhoX produces apo.pho file from a po.phx
translated proof obligation when the proof is successful. The
B/PhoX proof session that follows involves a two-step trans-
formation, depending on the file extension. This process
corresponds exactly to the GNU Make transformation using
suffix schemata, and can be copied and configured to link
BCaml with other theorem provers. The principal property
that must be preserved throughout this process is that every
sentence is a B theorem, if and only if its translation is a
B/PhoX theorem, which has been proven by Rocheteau &
al.[38].

4.2. Thebgop2phoxXSL style sheet
The translation step consists of applying our XSL

bgop2phoxstyle sheet to the B/XML proof obligations using
a XSLT processor. The XSL transformation schema allows
recursive mappings. Our translation is also recursively de-
fined. A first order languageà la B is composed of different
symbols for functions, relations, connectors and quantifiers.
Figure 5 in section 2.3.3 shows a PhoX proof obligation gen-
erated from the proof obligation shown in figure 1, after it
has been calculated and saved into an XML file.

A high-order languageà la PhoX is a simply-typed
lambda calculus with some typed constants. Our transla-
tion is based on associating every first order B symbolS
with a B/PhoX expressionS†, such that its extension to the
first-order terms formulae is merely defined by an inductive
commutation. In this way, our translation is sound using the
PhoX system of simple types. Moreover, every non-freeness



add_path "/usr/share/brillant/bphox/".
Import Blib.
flag auto_lvl 2.
flag auto_type true.
theorem op
/\Activated,BARRIER,Closed,ClosedB,
Closing,ClosingB,Deactivated,DownSpeed,
...,
Yellow.lState,Yellow.light(

(LCC in (part1 Z)) ->
(STATE in (part1 Z)) ->
...
((Yellow.lState app ((yellowLight app (obj)))) = On)
-> (
/\obj (((
(((obj in lcc) &

((state <+ \o ((o = obj,ShowingRlight)) app (obj))
in Activated)) &

((bStatus app ((lcc_sensor app (obj)))) = Opened)
)
->

((mode app (obj)) = Unsafe)))) ) )
.

Try intros ;; auto.
save.

Figure 5. One of the exploded, con-
verted to B/Phox, proof obligations for
timeOut 1 showRlight

rule and every substitution rule is easily obtained by theλ
binder properties.

4.3. Theblib PhoX library
The PhoX library for B reflects the first three chapters of

the B-Book. The content of the library is outlined briefly here
because the process for embedding B into PhoX is based on
it. (More details are available in Rocheteau & al.[38]). It con-
tains successive libraries for predicate calculus with equality,
the boolean domain, cartesian products, set operators, binary
relations, functions, arithmetic theory and finite sequencing.

4.4. Thechronosprocess killer
The proof step consists of producing apo.pho file from a

po.phx one. The existence of thepo.pho file means that the
required obligation holds. The absence of this file can mean
that the proof obligation does not hold. It can also mean that
the proof can not be completed due to lack of time or space,
causing the proof session to loop endlessly. In order to deal
with this problem, every PhoX call is controlled by a process
killer namedchronos.

The behaviour of thechronos produces the following
proof obligation classification: those with a successful proof,
those with a failed proof and those with a killed proof. The
following table gives the results for several different time-out
proof sessions for the famous boiler B project.

B
specifications

Parser
+ BTyper

Flattening
tool

Flat B
specification

Style
sheet

XSLT
processor

Flat
code

Figure 6. The code generation process to ob-
tain flat code

Time-out 1 s. 5 s. 60 s.
Generated proof obligations 2295
Successful 1823 1955 1971
Failed 0 0 0
Killed 462 340 324
Proof Rate 79% 85% 85%

The successful proof obligation set is built using a fixed-
point application. Assuming an increasing function f on nat-
ural numbers, which means that then+1th time-out is greater
than thenth one, the first session runs over the whole set of
generated proof obligations and then+1th session runs only
over the killed proof obligations of thenth session. However,
since using PhoX as a “black box” does not allow us to save
the proof state at its kill moment, the next session replays the
unkilled proof obligations from the beginning.

5. From B specifications to code
The code generation process is summarised in Figures 6

and 7. The first figure illustrates the generation process for
producing flat code, and the second figure illustrates the pro-
cess for producing component-oriented code (more details
on our approach to generate code can be found in [31] and in
[32]).

To generate flat code, the specifications have to be parsed
and annotated with types, and then flattened. From the flat
B specification, the code can be generated simply by using
a XSLT processor and the appropriate style-sheet. To gen-
erate component-oriented code, the specifications must be
parsed, and then translated into B-HLL specifications, which
are then annotated with types. Then, the part of the flattening
algorithm dedicated to eliminating refinement links is run.A
style sheet is applied to the B-HLL components thus obtained
in order to generate the code.

Figure 8 presents a B specification of a bounded stack.
The code presented in figure 9 is generated from this specifi-
cation. The package specifications use the generic Ada con-
struction to translate the parameters that specify the sizeof



B
specifications

Parser

B-HLL
specifications

B to BHLL tool
+ BHLL type checker

Flattened B-HLL
specifications

Simple flattening
tool

Style sheet
XSLT

processor

Component
oriented code

Figure 7. The code generation process to ob-
tain component oriented code

the stack. Our approach to code generation allows us putting
the properties that are expressed in the specifications intothe
code. (Please note that the code generation step did not use
the example introduced in section 3, because there is cur-
rently no refinement or implementation for this example).

6. Discussion, conclusion and perspectives
6.1. Comparison with other works

Several other formal methods also benefit from the same
kind of tools, developed with a similar design: using open-
source high-level languages and formats, or both. Many
of them can be found at [15], along with links to the for-
mal methods they implement. In addition, freely available
(but not open-source) tools exist for the B method as well:
B4Free[3] (distributed by Clearsy) and ProB [37]. The lat-
ter is an animator and model-checker programmed in Prolog,
and uses the XML files produced by the jBTools [19] as an
input.

We can also compareBRILLANT with projects of sim-
ilar nature, ambitions and/or design:Rodin [39] (for B#),
Overture[28] (for VDM++) and the Comprehensive Z Tools
[12](CZT). These and theBRILLANT project share several
common points: they use an XML-based interchange format,
and are driven by research needs (BRILLANT, CZT), indus-
trial interests (Rodin) or both (Overture). Moreover, all these
projects have a similar architecture, where the core tools
(parsing, typechecking, testing/validating plus other possi-
ble plugins/plugouts) are clearly separated. The difference
lies mainly in the underlying implementation and its facili-
ties: on the one hand,RodinandOvertureare based on the
Eclipse IDE [14] and thus provide a very consistent develop-
ment environment. Writing mandatory parts of such a frame-
work (parsing, compiling, graphical interface, test suites,. . . )
is therefore made, if not easier, at least more scalable and
reusable. On the other hand,CZT andBRILLANTare rather

MACHINE
stack(stack_size)

CONSTRAINTS
stack_size :N∧stack_size≥1

∧ stack_size≤MAXINT
VISIBLE VARIABLES
the_stack, stack_top

INVARIANT
the_stack : (1..stack_size)→N

∧ stack_top :N
∧ stack_top≥0
∧ stack_top≤stack_size

INITIALISATION
the_stack :: (1..stack_size)→N

|| stack_top := 0

OPERATIONS
push(addval) =
PRE

stack_top<stack_size
∧addval∈ N

THEN
stack_top := stack_top + 1

|| the_stack(stack_top + 1) := ad-
dval

END. . .
END

IMPLEMENTATION
stack_1(stack_size)

REFINES
stack

INITIALISATION
the_stack := (1..stack_size) * {0}

; stack_top := 0

OPERATIONS
push(addval) =
BEGIN

stack_top := stack_top + 1
;

the_stack(stack_top) := addval
END. . .

END

Figure 8. A B specification of a bounded stack

viewed as a more or less loosely connected set of tools: the
CZT are developed with Java (edition of Z specifications is
even supported by jEdit), and most tools ofBRILLANTare
developed in OCaml. We can therefore tighten the compari-
son betweenCZT andBRILLANT:
• The most proponent tool ofBRILLANT, BCaml, uses an
immutable type (using the terminology of theCZTdocumen-
tation [12]), thus avoiding the problems described for the de-
velopment ofCZT
• The future addition of B-HLL to BCaml required the unic-
ity of identifiers. The chosen approach for BCaml was to
make a scoping phase follow the parsing phase in order to
associate each identifier with a unique identity. Later on, the
treatments involving fresh variables is made easier thanksnot
only to that unicity, but also to the recursive nature of syntax
trees, which then allows the retrieving of all free variables.
Indeed, several libraries providing functions for high-level
data structures (lists, sets, hash tables,. . . ) exist
• As in CZT, the tools of BCaml can use the abstract syntax
tree directly instead of the XML exchange files in order to
speed up processing.

We can also note that the same kind of problems are
described in the publications describingOverture [28], al-
though the problem here was more linked to the chosen com-
piler generator than to the compilation technique. As a con-
clusion for this quick comparison, we can also note several
points:
• Our choice of a programming language (OCaml) proved to
be worthy: indeed, the most part of the development was (and
still is) made by intern students (thus not full-time engineers)
and PhD students



generic
stack_size : natural ;

package stack is
function is_empty return boolean ;
procedure push(addval : in natural );
procedure pop;
function top return natural ;
function initialised return boolean;

end stack;

package body stack is
--# invariant stack_top >= 0 and stack_top <= stack_size

the_stack : array (1..Stack_size) of natural ;
stack_top : 0..Stack_size ;

procedure push(addval : in natural ) is
begin

--# pre stack_top < stack_size
stack_top:=stack_top + 1;
the_stack(stack_top) := addval;

end push;

...

begin --initialisation
stack_top := 0

end stack;

Figure 9. The bounded stack Ada package
specification and body

• Following the implemented formalismby-the-bookmade
the integration of extensions (such as the B-HLL module sys-
tem) easier
• BRILLANThas the anteriority, although the idea of theCZT
seem to be contemporary
• The fact that, at the time of writing, theRodinproject is still
at the development stage should encourage the developers to
look at the other projects (presented here, for instance) to
benefit from their experience

6.2. Conclusion
BRILLANT is advantageous in that it can be used to test

and/or validate B-related experiments, and in fact, we have
been the first users of many of the prototypes presently avail-
able for the platform (bparser, bgop, btyper, bphox,. . . ).

TheBRILLANTplatform design has two principal orien-
tations: the use of open and standardised formats and the
open availability of the source codes for the tools (OCaml
and/or Java so far). We have been working to finetune the
platform to help it meet the needs of other theoretical re-
search projects, including but not limited to extensions of
the B language, improvements in the current tools, couplings
with other provers (such as Coq, Harvey) and other valida-
tion formalisms (e.g. model-checking).

The information presented in this article would appear
to demonstrate that we have reached our goal: open and

standardised formats (XML) have been used throughout the
whole platform, and this platform has become the testbed for
several other fundamental research projects (UML/OCL/B
coupling in section 3, proof in section 4, code generation in
section 5). As an example, all the source code examples (B
machines, logical formulas, XML, PhoX) either come from
theBRILLANTplatform, or derive from its use. For instance,
the B machines here are LATEX files using the style ofBRIL-
LANT for B machines, the LATEX files being obtained by the
application of an XSL stylesheet to XML abstract machines,
themselves obtained from the parsing of ASCII B machines.

6.3. Perspectives
The next evolutions ofBRILLANTwill be based on inte-

grating technologies that endorse the use of open formats.
The following evolutions are planned: the use of XML
schemas [41] instead of DTDs for the validation of XML
files; increased traceability between UML models, B ma-
chines, proof obligations and other derived models (gener-
ated code, test cases,. . . ) thanks to the flexibility of XML;
the representation of B models as projects databases using
XPath and XML-Query [42]; a distributed platform archi-
tecture using XML-RPC [43], that will allow the parser and
prover to be represented as servers to which B projects can
be sent for parsing or validation. Lastly, an ergonomic inter-
action mode for the different platform tools will be defined,
by proposing a graphic interface suitable for the underlying
platform technologies. This interaction will, consequently,
rely heavily on XML technologies.

Several other projects, these more related to the funda-
mental research currently under way, also offer interesting
perspectives for the future, such as UML/OCL/B coupling
[24], temporal extensions for B [11], and safe software com-
ponents generation [32]. Much work remains to be done, and
the platform developers are happy to provide their assistance
to those who would like to try to use the tools within the con-
text of their own research. All the necessary resources for
building BRILLANT tools are available on a web site dedi-
cated to collaborative free software development [9].

References
[1] J.-R. Abrial. The B Book - Assigning Programs to Meanings.

Cambridge University Press, Aug. 1996.
[2] J.-R. Abrial. B# : Toward a Synthesis between Z and B. In

ZB’2003 - Formal Specification and Development in Z and B,
pages 168–177, 2003.

[3] B4Free.http://www.b4free.com/.
[4] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. ME-

TEOR : A successful application of B in a large project. In
Proceedings of FM’99: World Congress on Formal Methods,
pages 369–387, 1999.

[5] S. Behnia.Test de modèles formels en B : cadre théorique et
critères de couvertures. Thèse de doctorat, Institut National
Polytechnique de Toulouse, Oct. 2000.



[6] J.-P. Bodeveix and M. Filali. Type synthesis in B and the
translation of B to PVS. InZB’2002 – Formal Specification
and Development in Z and B[22], pages 350–369.

[7] J.-P. Bodeveix, M. Filali, and C. Munoz. Formalisation de
la méthode B en COQ et PVS. InAFADL’2000 [23], pages
96–110.

[8] S. Brien and J. Nicholls. Z base standard: Version 1.0. Techni-
cal Monograph PRG-107, Oxford University Computing Lab-
oratory, 11 Keble Road, Oxford OX1 3QD, UK, November
1992.

[9] BRILLANT. http://gna.org/projects/brillant.
[10] M. Carnot, C. DaSilva, B. Dehbonei, and F. Mejia. Error-

free software development for critical systems using the B-
methodology.IEEE, pages 274–281, 1992.

[11] S. Colin, G. Mariano, and V. Poirriez. Duration calculus: A
real-time semantic for B. InFirst International Colloquium
on Theoretical Aspects of Computing. UNU-IIST, september
2004. Guiyang, China.

[12] Comprehensive Z Tools.http://czt.sourceforge.net/.
[13] B. Dehbonei and F. Mejia. Formal development of safety-

critical software systems in railway signalling. In Hinchey
and Bowen [17], pages 227–252.

[14] Eclipse.http://www.eclipse.org/.
[15] The www formal methods’ virtual library. http://vl.

fmnet.info/.
[16] B. L. f. FunkFahrBetrieb. Stand 1.10.1996, 1996.
[17] M. G. Hinchey and J. P. Bowen, editors.Applications of For-

mal Methods. Series in Computer Science. Prentice Hall In-
ternational, 1995.

[18] L. Jansen and E. Schnieder. Traffic control system case study:
Problem description and a note on domain-based software
specification. technical report, 2000.

[19] jBTools. http://lifc.univ-fcomte.fr/~tatibouet/
JBTOOLS/.

[20] R. Laleau and F. Polack. Coming and going from UML to B :
A proposal to support traceability in rigorous is development.
In ZB’2002 – Formal Specification and Development in Z and
B [22], pages 517–534.

[21] X. Leroy. A modular module system.Journal of Functional
Programming, 10(3):269–303, 2000.

[22] LSR-IMAG. ZB’2002 – Formal Specification and Develop-
ment in Z and B, volume 2272 ofLecture Notes in Computer
Science (Springer-Verlag), Grenoble, France, Jan. 2002.

[23] LSR/IMAG. Approches Formelles dans l’Assistance au
Développement de Logiciels, LSR/IMAG – BP 72 38402
Saint-Martin d’Heres Cedex – Grenoble – France, Jan. 2000.
LSR/IMAG.

[24] R. Marcano and N. Levy. Using B formal specifications for
analysis and verification of UML/OCL models. InWork-
shop on consistency problems in UML-based software devel-
opment. 5th International Conference on the Unified Model-
ing Language, Dresden, Germany, September 2002.

[25] R. Marcano, G. Mariano, and P. Bon. UML modelling as
the basis for formal analysis of railway traffic control sys-
tems. In Formal Methods for Automation and Safety in
Railway and Automotive Systems FORMS’2004, page to be
published, Braunschweig, Dec. 2004. Technische Universitat
Braunschweig.

[26] G. Mariano.Évaluation de logiciels critiques développés par
la méthode B : une approche quantitative. Thèse de doctorat,
Universitée de Valenciennes et du Hainaut-Cambrésis, Dec
1997.

[27] O. M. G. OMG. Object constraint language, version 2.0. final
adopted specification, omg document ptc/2003-10-14, Octo-
ber 2003.

[28] Overture (VDM++).http://www.overturetool.org/.
[29] P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and H.

Toetenel and D. J. Andrews and J. Dawes and G. Parkin and
others. Information technology — Programming languages,
their environments and system software interfaces — Vienna
Development Method — Specification Language — Part 1:
Base language, December 1996.

[30] D. Petit, G. Mariano, and V. Poirriez. Flattening B
Components for Code Generation. Technical Re-
port INRETS/RT-01-716-FR, INRETS, July 2001.
http://www.univ-valenciennes.fr/LAMIH/ROI/dpetit/Biblio/
Pub/RR/Flattening/RT-01-716-FR.ps.gz.

[31] D. Petit, G. Mariano, V. Poirriez, and J.-L. Boulanger.Auto-
matic Annotated Code Generation from B Formal Specifica-
tions. In G. Tarnai and E. Schnieder, editors,Symposium on
Formal Methods for Railway Operation and Control Systems,
pages 37–44. L’Harmattan, May 2003. ISBN 963 9457 45 0.

[32] D. Petit, V. Poirriez, and G. Mariano. The B method and
the component-based approach.Journal of Design & Process
Science: Transactions of the SDPS, 8(1):65–76, Mars 2004.
ISSN 1092-0617.

[33] D. Petit, V. Poirriez, and G. Mariano. Reuse of ML module
system for the B language. InForum on specification and
Design Languages, September 2004.

[34] PhoX website. {http://www.lama.univ-savoie.fr/
sitelama/Membres/pages_web/RAFFALLI}.

[35] Poseidon UML modelling tool website. http://www.
gentleware.com.

[36] M.-L. Potet and Y. Rouzaud. Composition and refinement in
the B method. InB’98 : The 2nd International B Conference,
pages 46–65, 1998.

[37] ProB. http://www.ecs.soton.ac.uk/~mal/systems/
prob.html.

[38] J. Rocheteau, S. Colin, G. Mariano, and V. Poirriez. Éval-
uation de l’extensibilité de PhoX : B/PhoX un assistant de
preuves pour B. InJournées Francophones pour les Langages
Applicatifs, pages 139–153, Jan. 2004.

[39] Rodin-B#.http://rodin-b-sharp.sourceforge.net/.
[40] B. Tatibouët, A. Requet, J.-C. Voisinet, and A. Hammad.Java

card code generation from B specifications. In I. J. Dong and
E. J. Woodcock, editors,ICFEM, volume 2885, pages 306–
318. Formal Methods and Software Engineering, Springer-
Verlag, 2003.

[41] H. S. Thompson, D. Beech, M. Maloney, and M. Mendelsohn.
“XML Schema Part 1: Structures”. W3C Recommendation,
May 2001.http://www.w3.org/TR/xmlschema-1/.

[42] World Wide Web Consortiumhttp://www.w3.org.
[43] XML-RPC. Internet remote procedure call.

http://www.xmlrpc.com/spec, 1999.


