BRILLANT :
An Open Source and XML-based platform for Rigourous Softwale Development

Samuel Colifi, Dorian Petit, Jérome RocheteduRafaél Marcanh Georges Marianl Vincent Poirriez

LAMIH/ROI, UMR CNRS 8530 INRETS-ESTAS
Université de Valenciennes et du Hainaut Cambrésis National Institute for Transport and Safety Research
x Le Mont Houy T 20rue Elisée Reclus - B.P. 317
F-59313 Valenciennes Cedex 9, France F-59666 Villeneuve d'Ascq, France
Email: Fi r st nane. Last nane@ni v- val enci ennes. fr Email: Fi r st nane. Last nane@nrets. fr
Abstract tools, these resulted from prototypes developed by ingdustr

, . rather than by the academic community. In fact, from 1993
The need for the B method first appeared in industry, ang 1999 the Atelier B development was funded by the "Con-
severql commercial tools have been developed to suppsrt tYbntion B " which was a collaborative effort of the RATP
formallsm: quever, feV\{ of thege tools aII(_)W reasoning O(’Ibarisian Autonomous Transportation Company), SNCF (the
the formalism itself or on its possible extensions. Thigkt - ..chNational Railway Society), INRETS (the National In-
presents an open-source platform, with a focus on the platsiyie for Transport and Safety Research) and Matra Trans-
form’s core component, thBCaml project. The t0ols pre- 1, (now Siemens Transportation Systems), among others.
sented here are used to show how very dlffere_nt approachesA computer scientist in the field of formal methods will
can be brought together around a central design to form qurceive certain paradoxes in the implementation of the B

](c:on5|sr;ce_nt tooIpqu, z_;md can Ee. uselt_jdto .deveksz Eafe SYSt®thod. For instance, the B method uses programming lan-
rom their specifications to their validation and the ger‘eraguages, such as Bkernel, that are not well documented or

tion of safe code. i specified and that are not particularly well-suited to Bgthi

Keywords. B method, toql support, UML modelling, XIv”"level of abstraction. However, these apparent paradoxes ca

proof tools, code generation be explained by the industrial origins of the method. Still,
the fact remains that the industrial tools currently avdda
for B are often inappropriate for scientific research, angth

1. Introduction do not provide effective support for efforts to extend the us
of the B method.

During the last decade of the previous millennium, theo- To remedy this problem, we present tBRILLANT [9]
retical research produced the B method, which is based fifamework, showing the feasibility of a safe software devel
the same fundamentals as Z [8] and VDM [29]. opment system that ranges from semi-formal specification

This method reconciles the pragmatic constraints of tHe&JML) to contract-equipped code generation. This frame-
industrial development of critical software with the sttite- work provides a central core into which different composent
oretical requirements that are inherent to mathematigal faan be plugged, including a central component, a UML plug-
malism. The B method is one of the rare successful formg, a proof plug-out, and a code generator plug-out.
methods used in industry, and supports multiple paradigms: Section 2 presents the central component, which allows
Substitutionsas a means for describing dynamic behavioihe components of a B project to be manipulated. The pars-
naturally; Formulasin a simple yet efficient logical frame- ing of B machines is examined in section 2.1.1, highlighting
work (set theory)Composition mechanisrtisat simplify de- the central role of XML as an exchange format. Abstract
velopmentRefinementgroviding a safe and efficient way to syntax tree manipulations, such as specification flattening
obtain secure computer code from abstract specifications are examined in section 2.2, and proof obligation genaratio

The B method was used in the METEOR project [4], ai section 2.3 . Section 3 describes the UML plug-in used to
well as in less well-known development projects [10, 13] antlanslate UML projects into B so as to validate them, as de-
even non-critical development projects [40]. scribed in Marcano & Levy [24] and Laleau & Polack [20].

The software industry adopted B largely because of tigection 4 presents the proof plug-out used to validate Bfproo
availability of software tools supporting all phases of thebligations, and section 5 describes a code generator plug-
B development process (semantics verification, refinementjt capable of embedding contracts into the code and sup-
proving, automatic code generation). Unlike most softwangorting several target languages. An example of a railway

system design project now being studied [25] is used to ibubstitutions. We decided to give priority to the correatspa
lustrate these components. Section 6 presents our comelusng of substitution sequences, to the detriment of a correct
based on the results of our experiments with the implemeparsing of records.

tation and use of thBRILLANT platform. e The definitions, designed to lighten repetitive, cumbemsom
notations, which cause a partial conflict with th&lL Rgram-
2. The BCaml Kernel mars. We decided to not expand the definitions and to keep

. _ _ them in the abstract syntax trees used in the original text, r
In this Section, we describe the three component parts &ficting the definitions to a subset that is expressive ghou

BCaml: a parser (with an XML output library to connectg allow them to be implemented with thé\LR parser with-
BCaml with the outside world), libraries to handle the modout losing too much of their usefulness.

ularity of B projects and a proof obligation generator. e Several so-calleceduce/reducandshift/reduceconflicts,
_ that represent ambiguous notations. We decided to remove
2.1. BCaml input and output the reduce/reduceonflicts, but to defer our decision about

The kernel of the Bcaml platform is made up of the firstheshift/reduceconflicts.
bricks that were developed when the platform was create2l1.2. Abstract syntax and XML syntax—two isomorphic
These bricks specify the concrete grammar (section 2.1fbymats: We used our definition of abstract syntax to di-
that defines the B language and the abstract syntax (seeetly infer an XML representation for B formal specifica-
tion 2.1.2) that defines the type used to manipulate the sp&ions. (Due to lack of space, this abstract syntax is not de-
ifications. This may seem obvious, but it is nonetheless inseribed here.) This XML encoding is called "B/XML" and is
portant because it makes collaboration with other devefopestored in an XML DTD file.
possible. One of these collaborative projects led to the de- Such abstract syntax is, as could be expected,
velopment of another brick in the BCaml kernel, called thenore tolerant than concrete syntax, and contains ele-
Btyper This brick is not described in this paper, but morgnents that facilitate the handling of the syntax struc-
details can be found in Bodeveix & Filali [6]. ture. For instance, the[substitutiofpredicate and
2.1.1. A concrete grammar for B:Several B grammars have [variable instanciatiorjsubstitutionconstructions appear in
been introduced over the years, coming from a variety diis abstract syntax, which means that the structure can be
sources:Clearsy (prev. Sterig), which corresponds to the manipulated to bring it closer to the matching mathematical
grammar used idtelierB, B-Corg which corresponds to the definitions given in the B-Book [1].
grammar used iB-Toolkit and Mariano’s PhD dissertation ~ We chose XML as our pivot format because of its flexibil-
[26], based on the B-Core grammar, which was introduced ity and its ease-of-use with third-party tools. Using it raak
do metrics on B specifications. our tools as independent of one another as possible, alijpwin

In order to build a tool that would be as useful as possible,researcher to use our parser, but someone else’s propf tool
we needed to define a grammar that would take into accodat example. This flexibility is due to the XSL style sheets
the remarks made about the grammars presented above. ®at formulate simple recursive treatments of the XML struc
BCamichoices had to respect the following constraints: ture, mostly transformations into other structured fosmat
o they had to be as compatible as possible with the maching/TEX, HTML, or PhoX, as mentioned in section 2.3.3).
that can be correctly parsed by the commercial tools (Ate-

lierB, B-Toolkit) mentioned above, 2.2. Abstract syntax tree manipulation

e they had to comply with the standat@éx and Yacctools 2.2.1. The flattening algorithm:

that allowLALRgrammars to be defined, and Overview :Flattening B specifications consists of eliminat-
e they had to cause as few conflicts as possible. ing the refinement and the composition links. The flattening

We chose OCaml as a supporting tool for our B develogigorithm uses one set of B components to build a single B
ments for several reasons. First, it allows symbolic noiesti component equivalent to the original set of B components.
to be handled easily. In addition, it has an efficient impleall the information for the different specifications are the
mentation, and comes bundled with tools that allow the pargrouped in one formal text.
ing of LALR grammars. Using this tool, we defined the B This notion of flattening exists implicitly in the BBook
language in LALR. Some of the problems we encountered jn]. Potet and Rouzaud used the term “flattening" in
doing so are described below. their work [36], but it was S. Behnia [5, PhD dissertation,
Peculiarities in the parsing of B machineS€ertain B lan- in french] who specified the algorithm entirely, and it issthi
guage features made defining an adequate grammar for thgg&cification that we used in our tool. The principle of the al
method difficult, including: gorithm s to connect the specification from the leaves (&her
e The records, whosg separator causes a conflict with theonly thel MPORTS andREFI NES links are taken into account) to
currently used separator for defining the sequence of tvtlee root machine of the project.

The enrichment mechanisi®ur flattening tool uses an en-possible to define structures (i.e. list of values, typesob{
richment mechanism that combines two specifications dmodules) and functors (functions from modules to modules)
one specification. This enrichment mechanism is describedthe obtained modular language.
briefly below. (More details can be found in Petit [30]) Instantiation: A more complete description of our work on
Refinementin REFI NES links, flattening consists of com- B-HLL can be found in one of our previous articles [33]. Our
bining some clauseSKTS, CONSTANTS PROPERTI ES) and using efforts to instantiate the HLL module system were divided
the more concrete parts of the specifications for other ekausinto two parts. The first part involved defining the abstract
For example, let us consider an abstract machine M and ianguage of the B-base language under study, based on the
refinement R. LeVarM (respectivelyvarR) be the variables abstract syntax defined during the development of the BCaml
of the machine (the refinement) amvM (InvR), the invari- Kernel. From this abstract syntax, we removed the part ded-
ants of this machine (this refinement). The variables of thieated to the modularity languageand then we developed a
flattened component are the variables of the refinement, oapping function from the BCaml kernel abstract syntax to
these variables are renamed if the same variable name exi®is new abstract syntax.
in the more abstract component. In this case, a gluing invari The second part of the instantiation involved defining the
ant is added, and the new variable name is propagated. kgpe checker. The types and the type-checking algorithm we
VarR 1 be this new variable clause, amyR 1, the invariant used were adapted from the work of J.P. Bodeveix and M.
in which the variables are renamed. Thus, the invariant &ilali [6] . We added some type-checking rules to express
the flattened component|ig VarM.(InvM A InvR_1) ‘ Every the visibility rules described in the B-Book [1], and we also
specification property follows the same schema, in which tifi¢fined type checking rules that take into account B language
abstract variables are existentially quantified becausg thParticularities, such as the semi-hiding principle andite
disappear in the flattened component. hibition of calling a given operation in the component where
Importation: In the | MPCRTS links (as in thel NcLupes — that operation is defined. .
links), flattening consists of merging some clausgsTg, To translate the visibility rules, we had to divide the
CONSTANTS PROPERTI ES, | NVAR! ANT, | NI TI AL SATI ON), instan- classes of things that can be defined in a B spec_lﬂcatlon into
tiating the parameters in the imported machine, and then gi€Veral sub-classes. For example, the substitution emrstr

panding the operation of the machine called in the implemeHQns were d|V|de_d_|r_1to BO substitution and non-B0 S_UbSt'tu
tation phase. tion. This sub-division allowed us to express certain rules

ImplementationThe flattening tool was the first tool im- su_ch af) an abstract \(/ja_natr)]Ie C?}” nottt:e_usgd |r1 a BO substi-
plemented after designing the BCaml kernel (section 2). ofition, but can be used in the other su stltut|o_n_s .
of the aims of this implementation was to “evaluate” the ker- The Bto_BHLL tool that translates the specification from

nel’s usability and to add to the platform those tools/litea the kernel's abstract syntax into our B-HLL syntax also gen-
that would be useful for manipulating B specifications. erates four interfaces for each B component. Each of these

First, the specification dependency graph had to be maiéwéerfaces' is used to simulate the four composition links un
manipulatable, since it is necessary to navigate through t er study._l NCLUDES, | MPORTS, SEES and USES'. B_y_ generat—
specifications in order to build the successive flattened-comJ these interfaces, we can translate the visibility rties
ponents. Therefore, we developed a library called BGraﬂHake up the B module language.

that implements the dependency graph type and the functioz@l Generating proof obligations

needed to manipulate that graph. In this section, we first describe the method used to imple-
Second, it was necessary to verify all the conditions th@tent the actual calculus for the weakest precondition. Then

allow a set of B components to be flattened. The total implgye show how it can be used to generate a B project’s proof

mentation of the flattening tool (condition verification + al gpligations. We then present the different options avélab

gorithmimplementation) requires about 3000 lines of OCanfbr exporting these proof obligations to other formats and

code. other tools.

2.2.2. The B-HLL module system: 2.3.1. Generalised Substitution Language (GSL)n order

Overview: The Harper-Lillibridge-Leroy module systemto generate proof obligations for B machines, we must be

(HLL) presented in Leroy [21] formalises the Standard MLable to calculate the weakest preconditions of the substitu

like modules. The HLL system provides a means for addingns. We chose to use the approach defined in the B-Book

a module language to a module-less core language. This siid-by reducing B substitutions to their smallest syntaaticl

tem also permits a formal semantic to be given to an exigemantic set (i.e. generalised substitutions). In theviotig

ing module language, as was the case for the ML modulgsaragraphs, we will use GSL to designate both the syntactic

Moreover, this powerful semantic is able to implement thget and the substitutions that occupy it. We defineGBé.in

module language with relative simplicity. BCamlas an abstract data type, as is described in the B-Book
Once the HLL module system has been instantiated, it [i§, B.3], with some notable exceptions:

e The assignment is defined as a multiple substitution; if
serves as a basic construct once the parallel substitutions(LCf GSE;\(#EQM,NT)
have been reduced. A STATE ={Deactivated,
e The repetition substitution™ does not appear; we chose i?;’;“,ig%ﬁ',%*;tﬁn“g"gf L?E,EQ%';E'Fai|ure}
instead to use thehile substitutionsince it does not exist in 2 Vellow,State(yellowLight(obi)) =Ony>
the loop proof rules [1, E.7]. [state(obi) =ShowingRIght
e The instantiation of a substitution variable H :;;'LOgﬁm';%‘riféﬁf:gmg%B‘)(;’bJ))
([variable:=expression]substitution) is reduced betoaes- (lccC LCC
forming the substitution. A loc_bariers loc ~harier

With the help of the abstract data type, proof obligations A Vobj. (objelcc
can be generated according to the rules described in the B- / E22{:3gg%ﬂjﬁg&g’?’;ﬁ’;‘;&ed
Book [1, appendix E]. The corresponding BCaml code was mode(obj) =Unsafe))
written with readability in mind, making it easily matched t

the rule it is derived from.

2.3.2. Proof Obligation Generation: The main steps for) o
generating proof obligations from a project can be divided Figure 1. Uncalculated proof obligation for the
into precise steps which are described in more detail below: timeOut-1 showRlight operation

Parsing: First, the machine and all the machines it depends

on are parsed. This parsing phase is followed by a SCOPIfgiting file. Trace information can be found in the abso-
pha_ise in which all unique identifiers that represent the saMite name of the file, which reflects the kind of proof obli-
variable name, machlne name or operation name ar€ Madfion it is, and the machine from which it is generated.
equal. In fact, prior to the parsing phase, each identifigsis e x L information in the file contains not only the pred-
sociated with a unique stamp; however, when the parsing;iS,q jtself, but also a root tag named (for obvious reasons)
finished, all the identifiers have different stamps. The SCOBy 5of (bl i gation. In addition, the file contains a tag con-
ing phase acts to make the stamps for those identifiers reWﬁhing all the free variables of the formula because some th

senting the same variable, machine or operation name €aYm provers requires all variables be bound. This tag helps

with resF’eCt to visibility. _) the stylesheet generate a file for such a theorem prover more
Generation of formulasThis step is based on the B-Book [1'easily.

appendix F] , resulting in proof obligations with the follew
ing shape:
[InstanciatiofHypothesis= [SubstitutiofGoal.

2.3.3. Exporting to other tools:Once the proof obligations
in the XML format are available, the XSL style sheets allow

This generation method allows more handling flexibiliterat them to be exported to other tools. For instance, the proof
on, for instance during debugging, or when showing studer8!igations can be transformed in&giX files (figure 1 is an
how proof obligations are generated, or when the proof to§@MPle of the results obtained), into text files, into HTML
applies the substitution to the goal. Bodeveix [7]shows fd€S Which improve the readability of the formulas, or into
instance how substitutions can be defined in Coq and p\BPhox files which allow the proof obligations to be verified.
Figure 1 shows an example of such an uncalculated proof Figure 5 in section 4.2 presents an example of an XSL
obligation, derived from the B project presented in secBon Stylesheet application for the proof obligation shown in fig
Optimisations: Several additional optimisations, or treature 1. First, the header of the file is inserted, which prosoke
ments, can be applied to the generated formulas. For exalfie loading of the appropriate PhoX library and finetunes the
ple, formulas can be calculated, resulting in predicatas tHoower of the prover (thél ag commands). Then, the free
contain no substitutions. It is also possible to split thalgo variables of the formula (the identifiers after the quan-

by splitting the formula into as many formulas as there aféier) are quantified. The formula itself is inserted in the
members of the conjunction in the goal: BPhoX syntax, by replacing the conjunctions of the hypothe-

(H=G1A...AGp) ~ (H=Gy),...,(H=Gy) ses by implications, in order to facilitate the work of PhoX.
Other possible, but not implemented, optimisations, idelu Finally, the command that is given to the prover is added to
removing formulas when the goal is trivially true or appearstart the proof Try intros ;; auto.). Inthe next step,

in the hypotheses, or changing the shape of the formula tfte theorem prover is fed the generated proof obligatioes fil
adapt it to a precise theorem prover. Certainly, it is soméSee section 4).

times easier to apply such transformationsto the abstyaets All of these steps (including the replacing of the con-
tax tree than to XML files using stylesheets. junctions in the hypotheses with implications) are done by
Final files and trace informationOnce the formulas have the XSL stylesheet, demonstrating @ hocquality of this
been generated, some trace information is embedded into taehnology designed for simple treatments involving recur

(Activated

UML/OCL)
model
.

(model.xmi)

f
trainDetectionEntry

1 yellowLightOn() timeOut_1 / redLightOn()

Yellow
LightOn

trainDetectionRear
[bSensorstatus=Closed]

/openBar?/
/ setMode(Safe)

Opening
Barrier

Red
LightOn

Deactivated

I0XML
processor

timeOut_2
1 closeBarrier()

UML types
(AST)

(uml.ml)

)

Closing
Barrier

3
B-parsed
specification

Figure 2. The proposed process

Failure

Figure 3. State diagram of the LCC system

(model.ml)

[bSensor.status=Opened]
/ setMode(Unsafe

timeOut_3

sivity. .
Now that we have presented the BCaml core, we ca3n'1' UML-based modelling

present the different plugins/plugouts revolving arouyd i In this section, the construction of a B specification from a

starting with a translator from UML/OCL specifications toUML/OCL modelis illustrated using the example of a radio-
B. based Railway Level Crossing (RLC) [16]. (A complete de-

scription of the traffic control system considered here aan b

3. From UML/OCL models to B specifications ~ found in Jansen & Schnieder [18]).

The different plugins/plugouts mentioned in the introduc:f"l'l' Class and state diagramsThe Level Crossing Con-

tion revolve around the BCaml core described above, starti fol system. (LCC.) controls the traffic Iights and barrie_rsaof
with a translator that changes UML/OCL specifications to vel crossing. It interacts with the veh_lcle sensors, tamt
specifications. Our work continues the work begun by Ma Jorne cgntrollsystem and the operations Ce'f‘”e‘.- When the
cano & Levy [24] on combining UML and B forconsistencySyStem is activated at the approach of a train, it must per-

checking, while also taking OCL annotations into accourgf)rm a series of actions, as illustrated by the state diagram

[27]. Adding OCL constraints is a useful way to capture thIgrﬂ'?ll;;znaéesgvgtrci:'icuf(r)grihae\llli Sﬁ.ecr:?g :&rr;gglgohrlztﬁ;\ts
key safety properties of the system being constructed. TEg ' on afte,r 3\’\260(;”%5 In f.y reW3 I?’me N 'ratl'gns follow-
main purpose of our work is to facilitate the construction of pt%e LCC's acti at'on' are Igclajnote,d Ib tth; elnts refi v(:d
a B formal specification, using automated tool support. Ol%l?g vatior a by v prefix
- N . I meQut . A full class diagram of this system can be found
process, which is shown in figure 2, breaks down into the

three steps described below: in [25] . S o .

From UML to XML: The Poseidon [35] modelling tool 3.1.2. adding OQL constralnts.V_hthout going into de_tall,
was chosen for drawing the UML model and generatin € O_CL constraints hglps specifying safety properties and
its associated XMl file (model.xmi). A transformation file nsuring _these properties are not .IOSt between the abstract
(xmi2uml) is written in the XSLT language to translate thépeqflcatlon and the |mplement_at|0n phas_es. These con-
XMl file into a XML file (model.xml) that represents the straints are natgrally foungl_later in the Invariant of thege
original UML file (hence, the name xmi2uml rather thar?rated B machines. Additional OCL constraints also help
xmi2xml) adding supplementary information that can not be found in
From XML to UML-parsed modelsthe IOXML processor the state diagrams. For instance, the closeBarrier operati
parses UML models elements of the XML file into OCam/@ised by the event imeQu2t, is specified as follows:

. . context LCC_System:closeBarrier
compliant data types accordingly to the UML abstract syn- | . sel f.yel | owli ght . stat e=On

tax tree definition (uml.ml). Therefore the resulting file and sel f.theBarrier. st at e=Cpened
(model.ml) can be used to generate the B specification. post: sel f.yel l owtight . state=0ff
From UML models to B specificationhe uml2b module and sel f.redLight. state=on

. . and sel f.theBarrier.state=C osed
translates UML classes, state diagrams and OCL constraint

into B specifications. The translation rules are implemente] o

in OCaml as mappings of the UML abstract syntax (uml.mf$-2- Generating the B specification

into the B abstract syntax (b.ml). The B specification resulting from the steps described
We chose to connect the tool directly to the abstract syabove is composed of abstract machines representing each

tax tree of BCaml rather than producing B concrete speailass. A root abstract machine specifies the whole system’s

fications in order to obtain a smoother integration for bothtructure and introduces all the associations betweesadas

tools. Though the same programming language is employ8®.1. Formalisation of class and state diagramsAn ab-

(OCaml), it is still possible to produce B concrete specificastract machine formalising a class describes the defeeted s

tions by using the XML output plus a stylesheet to generat# all the possible instances of the class (BARRIER), as

B ASCII files. well as the subset of its existing instances (i.e. barrieach

MACHINE
LCC_System

INCLUDES
Barrier, BarrierSensor, Yellow.Light,
Red.light, TrainborneCS

VARIABLES
barrier, bState

INVARIANT
Icc_barriere Icc —barrierA. ..

OPERATIONS

timeOut_1_redLightOn(obj) =

PRE
objelcc A
state(obj) =ShowingYlight\
bStatus(lcc_sensor(obj)) =Opened
bState(Icc_barrier(obj)) =Opened
Red.IState(redLight(obj)) =Off
Yellow.IState(yellowLight(obj)) =On

THEN
state(obj) :=ShowingRlight

|| Yellow.switchOff(yellowLight(obj))

|| Red.switchOn(redLight(obj))

END;

4. From B proof obligations to correctness

The BCaml Kernel provides the first two important types
of B tools, presented in Abrial'B# [2, section 4]. The first
includes the lexer, parser and typer and the second, thé proo
obligation generator. The third and last important B tool is
the automatic, interactive prover. We chose not to develop
such a tool within BCaml for a pragmatic reason: building
a B prover takes much more time than developing dedicated
libraries in an already existing prover for B according t@ ou
specifications. Instead, we built an add-on that can be re-
placed. We included the PhoX proof checker [34] because it
can be extended to the B mathematical foundations; its GPL
licence permits distribution with BCaml; its developergae
willing to work closely with us; and its highly intuitive syn
tax minimises the libraries’ development time.

Our contributions to a PhoX-based B prover include a pro-
cess killer used to control the proof time, the B extension of

PhoX, the translation from B to the PhoX extension and the

) o] B/PhoX GNU Make script that binds those tools together.
Figure 4. Formalisation of state diagrams

4.1. ThebphoxGNU Make script
attribute is formalised by a variable defined as a total fiomct pHox P

; . . A B prover must verify whether each proof obligation is
between the set of instances and the attribute type. Assocéatheorem or not. In the BCam| context, every BIXML proof

tions between c_Ia;ses are e_xpressed n B as binary rela’['o%ﬁgation has to be translated into the PhoX syntax and has
between the existing class instances (figure 4). These rela-

tions can be expressed precisely by using the wide s ectrt?nbe proved. PhoX producespa.pho file from a po.phx
. XPr -0 P y Dy using fhe \ PeCrihslated proof obligation when the proofis successfue T
of relation definitions in B, and by stating additional prope

. ; . B/PhoX proof session that follows involves a two-step trans
ties on their domains or ranges.

S)) formation, depending on the file extension. This process
Each transition is formalised by a B operation Whosgqresponds exactly to the GNU Make transformation using
name is the name of the incoming event concatenated Witffix schemata, and can be copied and configured to link

the name of the action. The precondition of the operatigficam with other theorem provers. The principal property
is deduced from the transition guard and the substitution dg ot myst be preserved throughout this process is that every
scribes the transition to the new state. sentence is a B theorem, if and only if its translation is a
3.2.2. Formalisation of OCL constraints: As depicted in B/PhoX theorem, which has been proven by Rocheteau &
section 3.1.2, two kinds of OCL constraints make their wal.[38].

into the resulting B project :

e The OCL constraints that specify class invariants are cori-2. Thebgop2phoxXSL style sheet

bined with the invariant of the related B machines The translation step consists of applying our XSL
e The OCL constraints that complete the information of statégop2phoxstyle sheet to the B/XML proof obligations using
diagrams are translated into B preconditions, for the pr@&XSLT processor. The XSL transformation schema allows
condition part (see section 3.1.2) and B substitutionsh suéecursive mappings. Our translation is also recursively de
as the predicate statement, for the postcondition part. Héted. A first order languagéla B is composed of different
instance, the call to red and yellow light operations froriymbols for functions, relations, connectors and quangifie
thet i meQut _1_r edLi ght On operation has been obtained byFigure 5 in section 2.3.3 shows a PhoX proof obligation gen-

translation of the following OCL constraint’s postconaiiti ~ €rated from the proof obligation shown in figure 1, after it
seljf .yel | owLi ght. state=Oif and sel f. redLi ght. state=On has been calculated and saved into an XML file.

an , A high-order language la PhoX is a simply-typed
sel f.theBarrier.state=C osed .
lambda calculus with some typed constants. Our transla-
The closing of the barrier does not appear in this operéion is based on associating every first order B synbol
tion, but in anothet i meQut operation in order to conform with a B/PhoX expressioB', such that its extension to the
with the translation of the state diagram. In the next sedirst-order terms formulae is merely defined by an inductive
tion, we introduce B/PhoX, a proof plugout for tlBRIL- commutation. In this way, our translation is sound using the
LANT platform. PhoX system of simple types. Moreover, every non-freeness

B . . Parser
add_path "/usr/share/brillant/bphox/". SPeC'flcaﬂonI + BTyper

Import Blib. ¥
flag auto_lvl 2.
flag auto_type true. tool
t heorem op Y
/\Act i vat ed, BARRI ER, O osed, O osedB, FlaiB

0 osi ng, O osi ngB, Deact i vat ed, DownSpeed, specificatio I

ey \

Yel low. | State, Yel I ow. |ight(Style XSLT Flat
(LCCin (partl 2)) -> sheel_’ processor) ™
(STATE in (partl 2)) ->

(('Yel low | State app ((yellowLight app (obj)))) = On)
-> (
1\obj (((Figure 6. The code generation process to ob-
(((obj inlcc) & tain flat code
((state <+ \o ((o = obj, ShowingRight)) app (obj))
in Activated)) &

((bStatus app ((lcc_sensor app (obj)))) = Opened) Time-out 1s. 5s. 60s.
L Generated proof obligations 2295
((mode app (obj)) = Unsafe)))))) Successful 1823 1955 1971
- Failed 0 0 0
Ty Intres iauto Killed 462 340 324
' Proof Rate 79% 85% 85%
The successful proof obligation set is built using a fixed-
Figure 5. One of the exploded, con- point application. Assuming an increasing function f on-nat
verted to B/Phox, proof obligations for ural numbers, which means that the 11 time-out is greater
timeOut_1_showRlight than then™ one, the first session runs over the whole set of

generated proof obligations and the- 1" session runs only
o])] over the killed proof obligations of th&" session. However,
rL_lle and every substitution rule is easily obtained by xhe gjnce using PhoX as a “black box” does not allow us to save
binder properties. the proof state at its kill moment, the next session replags t
. unkilled proof obligations from the beginning.
4.3. Theblib PhoX library P g g d

The PhoX library for B reflects the first three chapters e
the B-Book. The content of the library is outlined brieflyberoé' From B specifications to code
because the process for embedding B into PhoX is based onThe code generation process is summarised in Figures 6
it. (More details are available in Rocheteau & al.[38]).dhe and 7. The first figure illustrates the generation process for
tains successive libraries for predicate calculus withedityy ~ producing flat code, and the second figure illustrates the pro
the boolean domain, cartesian products, set operatoexybincess for producing component-oriented code (more details
relations, functions, arithmetic theory and finite seqirgrc On our approach to generate code can be found in [31] and in
[32]).
4.4. Thechronosprocess killer To generate flat code, the specifications have to be parsed
The proof step consists of producing@pho file froma and annotated with types, and then flattened. From the flat
po.phx one. The existence of thm.pho file means that the B specification, the code can be generated simply by using
required obligation holds. The absence of this file can me@nXSLT processor and the appropriate style-sheet. To gen-
that the proof obligation does not hold. It can also mean thatate component-oriented code, the specifications must be
the proof can not be completed due to lack of time or spagearsed, and then translated into B-HLL specifications, tvhic
causing the proof session to loop endlessly. In order to dese then annotated with types. Then, the part of the flattenin
with this problem, every PhoX call is controlled by a procesalgorithm dedicated to eliminating refinement links is ran.

killer namedchronos style sheetis applied to the B-HLL components thus obtained
The behaviour of thechronos produces the following in order to generate the code.
proof obligation classification: those with a successfolby Figure 8 presents a B specification of a bounded stack.

those with a failed proof and those with a killed proof. Th&he code presented in figure 9 is generated from this specifi-
following table gives the results for several differentéiout cation. The package specifications use the generic Ada con-
proof sessions for the famous boiler B project. struction to translate the parameters that specify thedfize

CONSTRAINTS

stack_size NAstack_size>1
B-HLL - B_t A stack_sizecMAXINT
specifications +BH VISIBLE _VARIABLES IMPLEMENTATION
\

B MACHINE
—_— stack(stack_size)
0_BHLL tool
LL type checker

the_stack, stack_top stack_1(stack_size)
Flattened B-HLL Simple flattening INVARIANT . REFINES
specifications I‘_ tool the_stack : (1..stack_size)N stack
~_ n i:git—:gpNo INITIALISATION
—p A stack_to;;%stack size the_stack := (1..stack_size) * {0}
Style sheefj] — — = — ; stack_top:=0
processor, INITIALISATION
. : OPERATIONS
Y the_stack :: (1..stack_size}N h(addval) =
K top = 0 push(addval) =
Component || stack_top: BEGIN
oriented codeI OPERATIONS stack_top := stack_top + 1
push(addval) = ;
PRE the_stack(stack_top) := addval
stack_top<stack_size END...
Aaddvale N
. . HEN END
Figure 7. The code generation process to ob- stack_top := stack_top + 1
tain component oriented code | tdhe_lstack(stack_top + 1) = ad-
va
END...

the stack. Our approach to code generation allows us puttingEND

the properties that are expressed in the sp_eC|f|cat|on_$heto Figure 8. A B specification of a bounded stack
code. (Please note that the code generation step did not use
the example introduced in section 3, because there is cur-

rently no refinement or implementation for this example). viewed as a more or less loosely connected set of tools: the
_ _ _ _ CZT are developed with Java (edition of Z specifications is

6. Discussion, conclusion and perspectives even supported by jEdit), and most toolsBRILLANT are

6.1. Comparison with other works developed in OCaml. We can therefore tighten the compari-

Several other formal methods also benefit from the sani@"" betwee®ZT andBRILLANT.
kind of tools, developed with a similar design: using operf "€ most proponent tool @RILLANT, BCaml, uses an

source high-level languages and formats, or both. Madfimutable type (using the terminology of tiZT documen-
of them can be found at [15], along with links to the fortation [12]), thus avoiding the problems described for the d
mal methods they implement. In addition, freely availabl¥€loPment ofCZT _ _
(but not open-source) tools exist for the B method as welt: The future addition of B-HLL to BCaml required the unic-
B4Free[3] (distributed by Clearsy) and ProB [37]. The latify of identifiers. The chosen approach for BCaml was to
ter is an animator and model-checker programmed in Prold§@ke a scoping phase follow the parsing phase in order to
and uses the XML files produced by the jBTools [19] as afssociate each identifier with a unique identity. Later be, t
input. treatments involving fresh variables is made easier thaaks
We can also comparBRILLANT with projects of sim- only to that unicity, but also to the recursive nature of aynt
ilar nature, ambitions and/or desigiRodin[39] (for B#), trees, which then. alloyvs the r_etrieving of all free v_ariaxble
Overture[28] (for VDM++) and the Comprehensive Z Tools!ndeed, several I_|brar|es providing functions lfor higkee
[12](CZT). These and th8RILLANT project share several data structures (lists, sets, hash tables,...) exist
common points: they use an XML-based interchange formatAs in CZT, the tools of BCaml can use the abstract syntax
and are driven by research neeBR(LLANT, CZT), indus- tree directly instead of the XML exchange files in order to
trial interests Rodin) or both Overturd. Moreover, all these speed up processing.
projects have a similar architecture, where the core tools We can also note that the same kind of problems are
(parsing, typechecking, testing/validating plus othesgpo described in the publications describifyerture[28], al-
ble plugins/plugouts) are clearly separated. The diffeeenthough the problem here was more linked to the chosen com-
lies mainly in the underlying implementation and its facili piler generator than to the compilation technique. As a con-
ties: on the one hand&odinandOvertureare based on the clusion for this quick comparison, we can also note several
Eclipse IDE [14] and thus provide a very consistent developpoints:
ment environment. Writing mandatory parts of such a frame-Our choice of a programming language (OCaml) proved to
work (parsing, compiling, graphical interface, test ssiite.) be worthy: indeed, the most part of the developmentwas (and
is therefore made, if not easier, at least more scalable asiill is) made by intern students (thus not full-time engirs)
reusable. On the other hardZT andBRILLANTare rather and PhD students

generic

S standardised formats (XML) have been used throughout the
stack_size : natural

whole platform, and this platform has become the testbed for

package stack is several other fundamental research projects (UML/OCL/B
fU”C“dO” i S_EHpté’df 9}9”‘, bool ean | _ coupling in section 3, proof in section 4, code generation in
procectire - pust (addval = in natural); section 5). As an example, all the source code examples (B
procedure pop; . .
function top return natural : machines, logical formulas, XML, PhoX) either come from
function initialised return bool ean; theBRILLANTplatform, or derive from its use. For instance,
end stack; the B machines here ar&TgX files using the style oBRIL-
package body Stack 15 LANT for B machines, theNIEX files being obtained by the

--# invariant stack_top >= 0 and stack_top <= stack_size gpplication of an XSL stylesheet to XML abstract machines,

the stack : array (1..Stack size) of natural : themselves obtained from the parsing of ASCII B machines.

stack_top : 0..Stack_size ; .
6.3. Perspectives

E;Oicﬁd”re push(addval : in natural) is The next evolutions oBRILLANTwill be based on inte-
g__# pre stack_top < stack_size grating tec_hnologies _that endorse the use of open formats.
stack_top:=stack_top + 1; The following evolutions are planned: the use of XML
dthe_;t ack(stack_top) := addval ; schemas [41] instead of DTDs for the validation of XML
end pus

files; increased traceability between UML models, B ma-
chines, proof obligations and other derived models (gener-
ated code, test cases,...) thanks to the flexibility of XML;
begin --initialisation the representation of B models as projects databases using
enzt ;Cl;at(‘)p =0 XPath and XML-Query [42]; a distributed platform archi-
tecture using XML-RPC [43], that will allow the parser and
prover to be represented as servers to which B projects can
be sent for parsing or validation. Lastly, an ergonomicrinte
action mode for the different platform tools will be defined,
by proposing a graphic interface suitable for the undegdyin
platform technologies. This interaction will, consequgnt

Figure 9. The bounded stack Ada package
specification and body

e Following the implemented formalisioy-the-bookmade v heavil XML technolodi
the integration of extensions (such as the B-HLL module syg? y heavily on €chnologies.
tem) easier Several other projects, these more related to the funda-

« BRILLANThas the anteriority, although the idea of ®&T mental research currently under way, also offer intergstin
seem to be contemporary ' perspectives for the future, such as UML/OCL/B coupling

e The fact that, at the time of writing, tHeodinproject is still [24), temporal extensions for B [11], and safe software com-

at the development stage should encourage the developer ?Qelmtsf genzratlcl)n [32]. Muﬁh worr rema!gs E{?} b_e dongt, and
look at the other projects (presented here, for instance)t ?hp a Oan evelgrli_irstarte tappy (t)hpr;)VIle 't?wl'r atf]SI an
benefit from their experience o those who would like to try to use the tools within the con-

text of their own research. All the necessary resources for
building BRILLANT tools are available on a web site dedi-

6.2. Conclusion ted to collaborative f ft devel t[9
BRILLANT is advantageous in that it can be used to tesfieC 0 coranorative free software developmen ok

and/or validate B-related experiments, and in fact, we have
been the first users of many of the prototypes presently—avaBEferenceS
able for the platform (bparser, bgop, btyper, bphox,...). [1] J.-R. Abrial. The B Book - Assigning Programs to Meanings
The BRILLANT platform design has two principal orien- Cambridge University Press, Aug. 1996.

tations: the use of open and standardised formats and thi@] J.-R. Abrial. B’ : Toward a Synthesis between Z and B. In
open availability of the source codes for the tools (OCaml ZB2003 - Formal Specification and Development in Z and B
and/or Java so far). We have been working to finetune the[zs] gi%es 1‘;?;17/7/' 200?4]‘ o

: : i ree.http:// www. bafree. con .
platform to. help I.t megt the needs .Of. other theoret!cal re 4] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. ME-
search projects, including but not limited to extensions of . o . .

. . . TEOR : A successful application of B in a large project. In
the B language, improvements in the current tools, coupling

A : Proceedings of FM'99: World Congress on Formal Methods
with other provers (such as Coq, Harvey) and other valida- pages 369-387, 1999.

tion formalisms (e.g. model-ch(-.:‘ckin.g). . [5] S.Behnia.Test de modéles formels en B : cadre théorique et
The information presented in this article would appear critéres de couverturesThése de doctorat, Institut National
to demonstrate that we have reached our goal: open and Polytechnique de Toulouse, Oct. 2000.

[6] J.-P. Bodeveix and M. Filali. Type synthesis in B and the[26] G. Mariano.Evaluation de logiciels critiques développés par

(7]

(8]

El
(10]

(11]

(12]
(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

translation of B to PVS. 11ZB’2002 — Formal Specification
and Development in Z and[R2], pages 350-369.

J.-P. Bodeveix, M. Filali, and C. Munoz. Formalisatioa d
la méthode B en COQ et PVS. WFADL'2000[23], pages
96-110.

S. Brienand J. Nicholls. Z base standard: Version 1.6hie

cal Monograph PRG-107, Oxford University Computing Lab-[28]
oratory, 11 Keble Road, Oxford OX1 3QD, UK, November [29]

1992.

BRILLANT. http://gna.org/projects/brillant.

M. Carnot, C. DaSilva, B. Dehbonei, and F. Mejia. Error-
free software development for critical systems using the B-
methodology.IEEE, pages 274-281, 1992.

S. Colin, G. Mariano, and V. Poirriez. Duration calcsiuA
real-time semantic for B. Iifirst International Colloquium
on Theoretical Aspects of ComputingNU-IIST, september
2004. Guiyang, China.

Comprehensive Z Toolsit t p: // czt . sour cef orge. net/.

B. Dehbonei and F. Mejia. Formal development of safetypl]

critical software systems in railway signalling. In Hinghe
and Bowen [17], pages 227-252.

Eclipse.http: // ww. ecl i pse. org/.

The www formal methods’ virtual library. http://vl.
frmet.infol.

B. L. f. FunkFahrBetrieb. Stand 1.10.1996, 1996.

M. G. Hinchey and J. P. Bowen, editorpplications of For-
mal Methods Series in Computer Science. Prentice Hall In-
ternational, 1995.

L. Jansen and E. Schnieder. Traffic control system daslys

Problem description and a note on domain-based softwaT§4]

specification. technical report, 2000.
jBTools. http://lifc.univ-fconte.fr/~tatibouet/
JBTOOLS/ .

R. Laleau and F. Polack. Coming and going from UML to B '[36]

A proposal to support traceability in rigorous is developine

In ZB'2002 — Formal Specification and Development in Z and
B [22], pages 517-534.

X. Leroy. A modular module systenmlournal of Functional
Programming 10(3):269-303, 2000.

LSR-IMAG. ZB’2002 — Formal Specification and Develop-
ment in Z and Bvolume 2272 ofecture Notes in Computer
Science (Springer-Verlag§renoble, France, Jan. 2002.
LSR/IMAG.
Développement de Logicielt SR/IIMAG — BP 72 38402
Saint-Martin d’'Heres Cedex — Grenoble — France, Jan. 2000.
LSR/IMAG.

R. Marcano and N. Levy. Using B formal specifications for
analysis and verification of UML/OCL models. Mork-

shop on consistency problems in UML-based software deve#1]

opment. 5th International Conference on the Unified Model-
ing LanguageDresden, Germany, September 2002.

[27]

[30]

[32]

[33]

[35]

[37]

[38]

Approches Formelles dans I'Assistance au[39]
[40]

la méthode B : une approche quantitativEhése de doctorat,
Universitée de Valenciennes et du Hainaut-Cambrésis, Dec
1997.

0. M. G. OMG. Object constraint language, version 2 ifalffi
adopted specification, omg document ptc/2003-10-14, Octo-
ber 2003.

Overture (VDM++).htt p: // www. overturetool . org/.

P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and H.
Toetenel and D. J. Andrews and J. Dawes and G. Parkin and
others. Information technology — Programming languages,
their environments and system software interfaces — Vienna
Development Method — Specification Language — Part 1:
Base language, December 1996.

D. Petit, G. Mariano, and V. Poirriez. Flattening B
Components for Code Generation. Technical Re-
port INRETS/RT-01-716-FR, INRETS, July 2001.

http://www.univ-valenciennes.fr/[LAMIH/ROI/dpetit/Blio/
Pub/RR/Flattening/RT-01-716-FR.ps.gz.

D. Petit, G. Mariano, V. Poirriez, and J.-L. Boulang@wuto-
matic Annotated Code Generation from B Formal Specifica-
tions. In G. Tarnai and E. Schnieder, editddymposium on
Formal Methods for Railway Operation and Control Systems
pages 37-44. L'Harmattan, May 2003. ISBN 963 9457 45 0.
D. Petit, V. Poirriez, and G. Mariano. The B method and
the component-based approadburnal of Design & Process
Science: Transactions of the SDR%1):65-76, Mars 2004.
ISSN 1092-0617.

D. Petit, V. Poirriez, and G. Mariano. Reuse of ML module
system for the B language. Forum on specification and
Design LanguagesSeptember 2004.

PhoX website. {http://ww.|ana. univ-savoie.fr/

sit el ama/ Menbr es/ pages_web/ RAFFALLI }.

Poseidon UML modelling tool website. http://ww.
gent | eware. com

M.-L. Potet and Y. Rouzaud. Composition and refinemant i
the B method. 18’98 : The 2nd International B Conference
pages 46-65, 1998.

ProB. http://wwm. ecs. soton. ac. uk/ ~mal / syst ens/
prob. htni .

J. Rocheteau, S. Colin, G. Mariano, and V. Poirriez. 1Eva
uation de I'extensibilité de PhoX : B/PhoX un assistant de
preuves pour B. Idournées Francophones pour les Langages
Applicatifs pages 139-153, Jan. 2004.

Rodin-B#.http: //rodi n- b- shar p. sour cef orge. net/.

B. Tatibouét, A. Requet, J.-C. Voisinet, and A. Hammaala
card code generation from B specifications. In I. J. Dong and
E. J. Woodcock, editordCFEM, volume 2885, pages 306—
318. Formal Methods and Software Engineering, Springer-
Verlag, 2003.

H. S. Thompson, D. Beech, M. Maloney, and M. Mendelsohn.
“XML Schema Part 1: Structures”. W3C Recommendation,
May 2001. http://www.w3.0rg/TR/xmlschema-1/.

R. Marcano, G. Mariano, and P. Bon. UML modelling as[42] World Wide Web Consortiurht t p: / / www. 3. or g.

the basis for formal analysis of railway traffic control sys-[43] XML-RPC.

tems. InFormal Methods for Automation and Safety in
Railway and Automotive Systems FORMS'2Q8Hge to be
published, Braunschweig, Dec. 2004. Technische Uniarsit
Braunschweig.

Internet remote call.

http://www.xmlrpc.com/spe@999.

procedure

