BRILLANT: An Open Source and XML-based
platform for Rigourous Software Development

Samuel Colin® Dorian Petit! Jérdme Rocheteau?
Rafaél Marcano® Georges Mariano® Vincent Poirriez!

1LAMIH/ROI, UMR CNRS 8530
University of Valenciennes

2INRETS/ESTAS
INRETS, institute of Villeneuve d’Ascq

Software Engineering and Formal Methods, 2005

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Outline

History

lin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

The need for tools

The context

History

1991 Idea of the B method
1996 B-Book [Abrial, 1996]
1998 Meteor

Circa 2000:
> Only tools available: At el i er B (Steria — now Clearsy),
B Tool kit (BCore)
» A formal method can never be safe enough:

» Corrections, or extensions to the B method arise
» Tools above not suitable to experiment said extensions

= Problems related with the “black box”-type approaches

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

The need for tools

The choices

History

» INRETS: French national institute for transport and safety
research. B is used for designing (a part of) Meteor, an
automated subway train

» How safe should the tools for using a formal method be ?

» Quis custodiet ipsos custodies? (Who shall keep the keepers
themselves?)

» Free, open-source steps for developing an expandable
platform for a formal method:

» Science is about exchanging ideas
» Formal methods are about developing in a most rigorous way

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

From the parser to the platform

Initial choices

History

We first needed to be able to simply parse B specifications.
» A well-established parsing technology
> A language to manipulate abstract data structures

» The language had to be based on technologies as safe and
as usable as possible

» Ideally, other treatments for the B abstract structures had to
be achievable without too much work.

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

From the parser to the platform
The growth

History

Once the abstract structure of a B project is at disposal, we can
manipulate it at will:

» Generate proof obligations of a B project
» Prove these proof obligations

» Generate code
>

Use the tools as a plug-out. B becomes the target of another
tool, such as a convertor of UML specifications.

> Add support for ill-defined expressions, increase the usability
of the tool,. ..

= BRILLANT: “B: research and software innovations thanks to
new technologies”.

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Outline

The core tools
(BCaml)

9 The core tools (BCaml)

lin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Parsing/printing technology

The core tools

Bea) Chosen programming language: Objective Caml

» Based on decades-long research in typing and functional
programming =- acceptable safety level

» Numerous libraries for the manipulation of abstract data
structures are available = pretty usable

» Libraries for interfacing OCaml and/or said structures to other
tools = extendable

» Can generate native-code, and (faster than java) byte-code
executables = Efficient

> Clear correspondence between the theoretical rules and the
tools supporting it

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Parsing/printing technology

(continued)

The core tools
(BCaml)

» Parsing technology: (Ocaml)Lex+(OCaml)Yacc.
» Long established, well understood, formal technology
» Helped highlight ambiguities in the B grammar
» Led to the publishing of the first mechanized grammar
covering the whole B language (records, definitions,. . .)
» Chosen exchange format: XML
» Collaborative development
» Only an exchange format: no more, no less.
» Represents unambiguously B abstract syntax
» Simple structure checks (DTDs, schemas)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Abstract manipulations
Modularity of B projects

The core tools
(BCaml)

» Flattening a B project:
» Building a single B machine equivalent to a whole project
(useful for generating code)
» “As-is” implementation of an existing algorithm
» Relies on functions manipulating dependency graphs
» Alternative semantics of the modularity of B: B-HLL

> Inspired by works in the functional programming world
» The modular links of B are given a much simpler semantics

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Abstract manipulations

Generation of proof obligations

The core tools
(BCaml)

> Following the B-Book “by the book”:

» Define a simpler substitution language (Generalised
Substitutions Language — GSL for short)

» Implement the weakest precondition calculus (WPC)

» Implement the functions for generating the different classes of
proof obligations

» But we can do more:

» Generate the formulas without applying the WPC

» Optimize the shape of the obtained formulas

» Embed trace information into the proof obligations (“where
does this variable come from ?”).

» Still using an XML format

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Outline

lin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Formalizing UML models

Goal: to be able to validate UVL models. These are translated into
B to do so (see [Marcano and Levy, 2002]):

» Classes = Sets representing instances of the classes
» Relations between classes = set-theoretic relations
» States = operations of the machine

» OCL constraints:

» Invariants become part of the machine’s invariant
» Preconditions become part of operations’ preconditions
» Postconditions become part of operations’ substitutions

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Mechanisms of the tool

Tightly connected to BCaml

Generation of XML files still possible

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Outline

lin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

A prover for B

» Developing another prover for set-theoretic predicate calculus
is not worth the effort:

» Takes a lot of time and manpower
» Such provers already exist
» Possible ideas:
» To adapt an existing prover = compatibility between B-Book
rules and the rules of the prover

» To use a more “general-purpose” prover (PVS, Isabelle/HOL,
Coq) = write the missing libraries

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

The chosen One

» We chose PhoX: Why (see [Rocheteau et al., 2004]) ?

» Its GPL license (it thus can be redistributed with other GPL
tools such as BCaml)

> Its developers desire to work closely with us

» As intuitive to use as possible

» Developers of the B libraries are comfortable with higher-order
reasoning

» Coq could be another candidate

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Mechanisms of the tool

Example of results:

BOILER project, 1s timeout:
79% success

SL Styleshee
bgop2phox

Successful Failed
proofs proofs

BOILER project, 5s timeout:
85% success

BOILER project, 60s timeout:
85% success

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Outline

Code
generation

a Code generation

lin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Flat code generation

24

specifications,

Parser
BType
Code
eneration 3
¢ 4 Flattening
tool

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez

Flat
code

BRILLANT

A typing phase is nec-
essary (typing information
can not be extracted from
invariants).

There is one stylesheet
per target language.

Component-oriented code generation

For keeping modular infor-
Code -HLL mation in the target source
generation Code.

Contracts (invariants, pre-
conditions of B machines)
can be preserved.

See [Petit et al., 2004].

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Outline

Conclusion &
perspectives

@ Conclusion & perspectives

lin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Conclusion &
perspectives

The big picture

B

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez

BRILLANT

IDExp
XSLTProc
PhoX
POG

ll-defined expressions

XSLT processor

Proof assistant

Proof obligations (POs) generator

Conclusion &
perspectives

The big picture

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez

BRILLANT

IDExp
XSLTProc
PhoX
POG

ll-defined expressions

XSLT processor

Proof assistant

Proof obligations (POs) generator

Conclusion &
perspectives

The big picture

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez

BRILLANT

IDExp
XSLTProc
PhoX
POG

ll-defined expressions

XSLT processor

Proof assistant

Proof obligations (POs) generator

The big picture

IDExp = lll-defined expressions
XSLTProc = XSLT processor
PhoX = Proof assistant
POG = Proof obligations (POs) generator

Conclusion &
perspectives

f
I

|
|

i3
Code: Text, Html, TeX,
OCaml, Eiffel,

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

The big picture

IDExp = lll-defined expressions
XSLTProc = XSLT processor
PhoX = Proof assistant
POG = Proof obligations (POs) generator

Flattened B HLL
FOST fIPM specnflcatlons] }/ec flcaho
B
| !

i3
Code: Text, Html, TeX,
OCaml, Eiffel,

Conclusion &
perspectives

specifications
1

Typed BHLL]

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

The big picture

IDExp = lll-defined expressions
XSLTProc = XSLT processor
PhoX = Proof assistant
POG = Proof obligations (POs) generator

POs XML 3)3/ Flattened B HLL
fl" ti specnflcatlons eci ﬂc:at.o
_
| i

POs BPhoX

Conclusion &
perspectives

specifications
1

Typed BHLL]

i3
Code: Text, Html, TeX,
OCaml, Eiffel,

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

The big picture

IDExp = lll-defined expressions
XSLTProc = XSLT processor
PhoX = Proof assistant
POG = Proof obligations (POs) generator

Conclusion &
perspectives
Flattened B HLL Typed BHLL
specifications: ecificatiol specifications

S %
| 1

cations | m

i3
Code: Text, Html, TgX,
OCaml, Eiffel,

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

The big picture

IDExp = lll-defined expressions
XSLTProc = XSLT processor
PhoX = Proof assistant
POG = Proof obligations (POs) generator

Conclusion &
perspectives

specifications
1

Flattened B HLL

[POs ‘XM'—j [POs IDExpjy ﬂra{;ng specnflcatlons] }/ec flcaho
\
B |

i T
- { \ \ \
v | b —— i
= Code: Text, Html, TgX,
Fiok

'
OCaml, Eiffel, Flattened code

Typed BHLL]

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Thoughts so far

» What characteristics are desirable for a rigorous software
development ?

» High level: either the language (OCaml) or the methods
(ANTLR)

Conclusion &
perspectives

» The necessity of these characteristics is enforced by the
development context (Master students, PhD students)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Thoughts so far

» What characteristics are desirable for a rigorous software
development ?
» High level: either the language (OCaml) or the methods
(ANTLR)
Conclusion & » Suited: the task of each separate component suits the chosen
PeSPECiEs tool (OCaml, PhoX, XML as an exchange format)

» The necessity of these characteristics is enforced by the
development context (Master students, PhD students)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Thoughts so far

» What characteristics are desirable for a rigorous software
development ?
» High level: either the language (OCaml) or the methods
(ANTLR)
Conclusion & » Suited: the task of each separate component suits the chosen
PeSPECiEs tool (OCaml, PhoX, XML as an exchange format)
» Simple: the tools shall allow simpler development or simpler
use (PhoX usability, UML for model development)

» The necessity of these characteristics is enforced by the
development context (Master students, PhD students)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Thoughts so far

» What characteristics are desirable for a rigorous software
development ?

» High level: either the language (OCaml) or the methods
(ANTLR)

Conclusion & » Suited: the task of each separate component suits the chosen

PeSPECiEs tool (OCaml, PhoX, XML as an exchange format)

» Simple: the tools shall allow simpler development or simpler
use (PhoX usability, UML for model development)

» Automatic: where possible, process automatically data or
code snippets (XSL stylesheets for code generation)

» The necessity of these characteristics is enforced by the
development context (Master students, PhD students)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Comparison with other tools

Let us try to give characteristics of other similar tools
» Rodin (event B).
» Eclipse IDE (simple, automatic, suited)
» Appeared 2004-05, event B specs published 2005-07
Conclusion & » ProB (B method)

perspecties » Animation, model-checking, Prolog, XML (high level, suited,
automatic)

» Appeared 2003-07, first alpha release 2003-10, 1.0.0 release
2004-03

» CZT (Community Z Tools)

» Similar with BRILLANT. Java, jEdit, Z extensions (suited,
simple)
» Appeared 2001-07, first beta release 2004-12

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Other tools
A quick glimpse

ABTools (B method): programmed in Java, uses ANTLR, is
part of BRILLANT

s;nsf)':zs;j » Ebba (B method): corrects some B typechecking rules,
programmed in Haskell

» Hets (CASL): based on algebraic specifications, programmed
in Haskell

Many others...

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Undergoing and future development

Treatments of ill-defined expressions in B
Ergonomic interaction mode (again, based on the XM. format)

Conclusion &
perspectives

Move towards a communicating framework (XM.- RPC)
B models as projects databases (XPat h, XQuery)
Temporal extension of the B method [Colin et al., 2004]

vV v vV V. VY

B event ?

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

References

For Further Reading |

Abrial, J.-R. (1996).
The B Book - Assigning Programs to Meanings.
Cambridge University Press.

Colin, S., Mariano, G., and Poirriez, V. (2004).

Duration calculus: A real-time semantic for B.

In First International Colloquium on Theoretical Aspects of Computing. UNU-IIST.
Guiyang, China.

Marcano, R. and Levy, N. (2002).

Using B formal specifications for analysis and verification of UML/OCL models.
In Workshop on consistency problems in UML-based software development. 5th
International Conference on the Unified Modeling Language, Dresden, Germany.

Petit, D., Poirriez, V., and Mariano, G. (2004).

The B method and the component-based approach.
Journal of Design & Process Science: Transactions of the SDPS, 8(1):65-76.
ISSN 1092-0617.

Rocheteau, J., Colin, S., Mariano, G., and Poirriez, V. (2004).

Evaluation de I'extensibilité de PhoX : B/PhoX un assistant de preuves pour B.
In Journées Francophones pour les Langages Applicatifs, pages 139-153.

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT

Questions ?

Questions

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 29

	History
	The core tools (BCaml)
	UML/B
	BPhoX
	Code generation
	Conclusion & perspectives
	References
	Questions

