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The need for tools

The context

History

1991 Idea of the B method
1996 B-Book [Abrial, 1996]
1998 Meteor

Circa 2000:
> Only tools available: At el i er B (Steria — now Clearsy),
B Tool kit (BCore)
» A formal method can never be safe enough:

» Corrections, or extensions to the B method arise
» Tools above not suitable to experiment said extensions

= Problems related with the “black box”-type approaches
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The need for tools

The choices

History

» INRETS: French national institute for transport and safety
research. B is used for designing (a part of) Meteor, an
automated subway train

» How safe should the tools for using a formal method be ?

» Quis custodiet ipsos custodies? (Who shall keep the keepers
themselves?)

» Free, open-source steps for developing an expandable
platform for a formal method:

» Science is about exchanging ideas
» Formal methods are about developing in a most rigorous way
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From the parser to the platform

Initial choices

History

We first needed to be able to simply parse B specifications.
» A well-established parsing technology
> A language to manipulate abstract data structures

» The language had to be based on technologies as safe and
as usable as possible

» Ideally, other treatments for the B abstract structures had to
be achievable without too much work.
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From the parser to the platform
The growth

History

Once the abstract structure of a B project is at disposal, we can
manipulate it at will:

» Generate proof obligations of a B project
» Prove these proof obligations

» Generate code
>

Use the tools as a plug-out. B becomes the target of another
tool, such as a convertor of UML specifications.

> Add support for ill-defined expressions, increase the usability
of the tool,. ..

= BRILLANT: “B: research and software innovations thanks to
new technologies”.
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Parsing/printing technology

The core tools

Bea) Chosen programming language: Objective Caml

» Based on decades-long research in typing and functional
programming =- acceptable safety level

» Numerous libraries for the manipulation of abstract data
structures are available = pretty usable

» Libraries for interfacing OCaml and/or said structures to other
tools = extendable

» Can generate native-code, and (faster than java) byte-code
executables = Efficient

> Clear correspondence between the theoretical rules and the
tools supporting it
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Parsing/printing technology

(continued)

The core tools
(BCaml)

» Parsing technology: (Ocaml)Lex+(OCaml)Yacc.
» Long established, well understood, formal technology
» Helped highlight ambiguities in the B grammar
» Led to the publishing of the first mechanized grammar
covering the whole B language (records, definitions,. . .)
» Chosen exchange format: XML
» Collaborative development
» Only an exchange format: no more, no less.
» Represents unambiguously B abstract syntax
» Simple structure checks (DTDs, schemas)
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Abstract manipulations
Modularity of B projects

The core tools
(BCaml)

» Flattening a B project:
» Building a single B machine equivalent to a whole project
(useful for generating code)
» “As-is” implementation of an existing algorithm
» Relies on functions manipulating dependency graphs
» Alternative semantics of the modularity of B: B-HLL

> Inspired by works in the functional programming world
» The modular links of B are given a much simpler semantics
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Abstract manipulations

Generation of proof obligations

The core tools
(BCaml)

> Following the B-Book “by the book”:

» Define a simpler substitution language (Generalised
Substitutions Language — GSL for short)

» Implement the weakest precondition calculus (WPC)

» Implement the functions for generating the different classes of
proof obligations

» But we can do more:

» Generate the formulas without applying the WPC

» Optimize the shape of the obtained formulas

» Embed trace information into the proof obligations (“where
does this variable come from ?”).

» Still using an XML format
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Formalizing UML models

Goal: to be able to validate UVL models. These are translated into
B to do so (see [Marcano and Levy, 2002]):

» Classes = Sets representing instances of the classes
» Relations between classes = set-theoretic relations
» States = operations of the machine

» OCL constraints:

» Invariants become part of the machine’s invariant
» Preconditions become part of operations’ preconditions
» Postconditions become part of operations’ substitutions
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Mechanisms of the tool

Tightly connected to BCaml

Generation of XML files still possible
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A prover for B

» Developing another prover for set-theoretic predicate calculus
is not worth the effort:

» Takes a lot of time and manpower
» Such provers already exist
» Possible ideas:
» To adapt an existing prover = compatibility between B-Book
rules and the rules of the prover

» To use a more “general-purpose” prover (PVS, Isabelle/HOL,
Coq) = write the missing libraries
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The chosen One

» We chose PhoX: Why (see [Rocheteau et al., 2004]) ?

» Its GPL license (it thus can be redistributed with other GPL
tools such as BCaml)

> Its developers desire to work closely with us

» As intuitive to use as possible

» Developers of the B libraries are comfortable with higher-order
reasoning

» Coq could be another candidate
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Mechanisms of the tool

Example of results:

BOILER project, 1s timeout:
79% success

SL Styleshee
bgop2phox

Successful Failed
proofs proofs

BOILER project, 5s timeout:
85% success

BOILER project, 60s timeout:
85% success
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Flat code generation

24

specifications,

Parser
BType
Code
eneration 3
¢ 4 Flattening
tool
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code

BRILLANT

A typing phase is nec-
essary (typing information
can not be extracted from
invariants).

There is one stylesheet
per target language.



Component-oriented code generation

For keeping modular infor-
Code -HLL mation in the target source
generation Code.

Contracts (invariants, pre-
conditions of B machines)
can be preserved.

See [Petit et al., 2004].
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Conclusion &
perspectives

The big picture

B
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The big picture

IDExp = lll-defined expressions
XSLTProc = XSLT processor
PhoX = Proof assistant
POG = Proof obligations (POs) generator

Conclusion &
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The big picture
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The big picture

IDExp = lll-defined expressions
XSLTProc = XSLT processor
PhoX = Proof assistant
POG = Proof obligations (POs) generator
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The big picture

IDExp = lll-defined expressions
XSLTProc = XSLT processor
PhoX = Proof assistant
POG = Proof obligations (POs) generator

Conclusion &
perspectives

specifications
1

Flattened B HLL

[POs ‘XM'—j [POs IDExpjy ﬂra{;ng specnflcatlons] }/ec flcaho
\
B |

i T
- { \ \ \
v | b —— i
= Code: Text, Html, TgX,
Fiok

'
OCaml, Eiffel, Flattened code

Typed BHLL]

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT



Thoughts so far

» What characteristics are desirable for a rigorous software
development ?

» High level: either the language (OCaml) or the methods
(ANTLR)

Conclusion &
perspectives

» The necessity of these characteristics is enforced by the
development context (Master students, PhD students)
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Thoughts so far

» What characteristics are desirable for a rigorous software
development ?

» High level: either the language (OCaml) or the methods
(ANTLR)

Conclusion & » Suited: the task of each separate component suits the chosen

PeSPECiEs tool (OCaml, PhoX, XML as an exchange format)

» Simple: the tools shall allow simpler development or simpler
use (PhoX usability, UML for model development)

» Automatic: where possible, process automatically data or
code snippets (XSL stylesheets for code generation)

» The necessity of these characteristics is enforced by the
development context (Master students, PhD students)
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Comparison with other tools

Let us try to give characteristics of other similar tools
» Rodin (event B).
» Eclipse IDE (simple, automatic, suited)
» Appeared 2004-05, event B specs published 2005-07
Conclusion & » ProB (B method)

perspecties » Animation, model-checking, Prolog, XML (high level, suited,
automatic)

» Appeared 2003-07, first alpha release 2003-10, 1.0.0 release
2004-03

» CZT (Community Z Tools)

» Similar with BRILLANT. Java, jEdit, Z extensions (suited,
simple)
» Appeared 2001-07, first beta release 2004-12
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Other tools
A quick glimpse

ABTools (B method): programmed in Java, uses ANTLR, is
part of BRILLANT

s;nsf)':zs;j » Ebba (B method): corrects some B typechecking rules,
programmed in Haskell

» Hets (CASL): based on algebraic specifications, programmed
in Haskell

Many others...
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Undergoing and future development

Treatments of ill-defined expressions in B
Ergonomic interaction mode (again, based on the XM. format)

Conclusion &
perspectives

Move towards a communicating framework (XM.- RPC)
B models as projects databases (XPat h, XQuery)
Temporal extension of the B method [Colin et al., 2004]

vV v vV V. VY

B event ?
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