
History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

BRILLANT: An Open Source and XML-based
platform for Rigourous Software Development

Samuel Colin1 Dorian Petit1 Jérôme Rocheteau2

Rafaël Marcano2 Georges Mariano2 Vincent Poirriez1

1LAMIH/ROI, UMR CNRS 8530
University of Valenciennes

2INRETS/ESTAS
INRETS, institute of Villeneuve d’Ascq

Software Engineering and Formal Methods, 2005

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 1

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Outline

1 History

2 The core tools (BCaml)

3 UML/B

4 BPhoX

5 Code generation

6 Conclusion & perspectives

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 2

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The need for tools
The context

1991 Idea of the B method
1996 B-Book [Abrial, 1996]
1998 Meteor
.

Circa 2000:

◮ Only tools available: AtelierB (Steria – now Clearsy),
B Toolkit (BCore)

◮ A formal method can never be safe enough:
◮ Corrections, or extensions to the B method arise
◮ Tools above not suitable to experiment said extensions

⇒ Problems related with the “black box”-type approaches

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 3

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The need for tools
The choices

◮ INRETS: French national institute for transport and safety
research. B is used for designing (a part of) Meteor, an
automated subway train

◮ How safe should the tools for using a formal method be ?
◮ Quis custodiet ipsos custodies? (Who shall keep the keepers

themselves?)

◮ Free, open-source steps for developing an expandable
platform for a formal method:

◮ Science is about exchanging ideas
◮ Formal methods are about developing in a most rigorous way

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 4

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

From the parser to the platform
Initial choices

We first needed to be able to simply parse B specifications.

◮ A well-established parsing technology

◮ A language to manipulate abstract data structures

◮ The language had to be based on technologies as safe and
as usable as possible

◮ Ideally, other treatments for the B abstract structures had to
be achievable without too much work.

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 5

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

From the parser to the platform
The growth

Once the abstract structure of a B project is at disposal, we can
manipulate it at will:

◮ Generate proof obligations of a B project

◮ Prove these proof obligations

◮ Generate code

◮ Use the tools as a plug-out. B becomes the target of another
tool, such as a convertor of UML specifications.

◮ Add support for ill-defined expressions, increase the usability
of the tool,. . .

⇒ BRILLANT: “B: research and software innovations thanks to
new technologies”.

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 6

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Outline

1 History

2 The core tools (BCaml)

3 UML/B

4 BPhoX

5 Code generation

6 Conclusion & perspectives

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 7

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Parsing/printing technology

Chosen programming language: Objective Caml

◮ Based on decades-long research in typing and functional
programming ⇒ acceptable safety level

◮ Numerous libraries for the manipulation of abstract data
structures are available ⇒ pretty usable

◮ Libraries for interfacing OCaml and/or said structures to other
tools ⇒ extendable

◮ Can generate native-code, and (faster than java) byte-code
executables ⇒ Efficient

◮ Clear correspondence between the theoretical rules and the
tools supporting it

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 8

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Parsing/printing technology
(continued)

◮ Parsing technology: (Ocaml)Lex+(OCaml)Yacc.
◮ Long established, well understood, formal technology
◮ Helped highlight ambiguities in the B grammar
◮ Led to the publishing of the first mechanized grammar

covering the whole B language (records, definitions,. . .)

◮ Chosen exchange format: XML
◮ Collaborative development
◮ Only an exchange format: no more, no less.
◮ Represents unambiguously B abstract syntax
◮ Simple structure checks (DTDs, schemas)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 9

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Abstract manipulations
Modularity of B projects

◮ Flattening a B project:
◮ Building a single B machine equivalent to a whole project

(useful for generating code)
◮ “As-is” implementation of an existing algorithm
◮ Relies on functions manipulating dependency graphs

◮ Alternative semantics of the modularity of B: B-HLL
◮ Inspired by works in the functional programming world
◮ The modular links of B are given a much simpler semantics

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 10

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Abstract manipulations
Generation of proof obligations

◮ Following the B-Book “by the book”:
◮ Define a simpler substitution language (Generalised

Substitutions Language – GSL for short)
◮ Implement the weakest precondition calculus (WPC)
◮ Implement the functions for generating the different classes of

proof obligations

◮ But we can do more:
◮ Generate the formulas without applying the WPC
◮ Optimize the shape of the obtained formulas
◮ Embed trace information into the proof obligations (“where

does this variable come from ?”).

◮ Still using an XML format

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 11

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Outline

1 History

2 The core tools (BCaml)

3 UML/B

4 BPhoX

5 Code generation

6 Conclusion & perspectives

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 12

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Formalizing UML models

Goal: to be able to validate UML models. These are translated into
B to do so (see [Marcano and Levy, 2002]):

◮ Classes ≡ Sets representing instances of the classes

◮ Relations between classes ≡ set-theoretic relations

◮ States ≡ operations of the machine
◮ OCL constraints:

◮ Invariants become part of the machine’s invariant
◮ Preconditions become part of operations’ preconditions
◮ Postconditions become part of operations’ substitutions

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 13

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Mechanisms of the tool

UML model Poseidon

XMI files xmi2uml

XML files ioXML

UML OCaml
files

uml2b

B ASTs
OCaml files

B XML files

Tightly connected to BCaml

Generation of XML files still possible

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 14

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Outline

1 History

2 The core tools (BCaml)

3 UML/B

4 BPhoX

5 Code generation

6 Conclusion & perspectives

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 15

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

A prover for B

◮ Developing another prover for set-theoretic predicate calculus
is not worth the effort:

◮ Takes a lot of time and manpower
◮ Such provers already exist

◮ Possible ideas:
◮ To adapt an existing prover ⇒ compatibility between B-Book

rules and the rules of the prover
◮ To use a more “general-purpose” prover (PVS, Isabelle/HOL,

Coq) ⇒ write the missing libraries

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 16

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The chosen One

◮ We chose PhoX: Why (see [Rocheteau et al., 2004]) ?
◮ Its GPL license (it thus can be redistributed with other GPL

tools such as BCaml)
◮ Its developers desire to work closely with us
◮ As intuitive to use as possible
◮ Developers of the B libraries are comfortable with higher-order

reasoning

◮ Coq could be another candidate

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 17

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Mechanisms of the tool

XML POs
XSL Stylesheet

bgop2phox

PhoX files
chronos
+PhoX

Successful
proofs

Failed
proofs

Example of results:

BOILER project, 1s timeout:
79% success

BOILER project, 5s timeout:
85% success

BOILER project, 60s timeout:
85% success

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 18

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Outline

1 History

2 The core tools (BCaml)

3 UML/B

4 BPhoX

5 Code generation

6 Conclusion & perspectives

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 19

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Flat code generation

B
specifications

Parser
+ BTyper

Flattening
tool

Flat B
specification

Style
sheet

XSLT
processor

Flat
code

A typing phase is nec-
essary (typing information
can not be extracted from
invariants).

There is one stylesheet
per target language.

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 20

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Component-oriented code generation

B
specifications

Parser

B-HLL
specifications

B_to_BHLL tool
+ BHLL type checker

Flattened B-HLL
specifications

Simple flattening
tool

Style sheet
XSLT

processor

Component
oriented code

For keeping modular infor-
mation in the target source
code.

Contracts (invariants, pre-
conditions of B machines)
can be preserved.

See [Petit et al., 2004].

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 21

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Outline

1 History

2 The core tools (BCaml)

3 UML/B

4 BPhoX

5 Code generation

6 Conclusion & perspectives

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 22

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The big picture

B
specifications

IDExp = Ill-defined expressions
XSLTProc = XSLT processor

PhoX = Proof assistant
POG = Proof obligations (POs) generator

Parser

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 23

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The big picture

B
specifications

IDExp = Ill-defined expressions
XSLTProc = XSLT processor

PhoX = Proof assistant
POG = Proof obligations (POs) generator

Parser

Typer

Typed B
specifications

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 23

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The big picture

B
specifications

IDExp = Ill-defined expressions
XSLTProc = XSLT processor

PhoX = Proof assistant
POG = Proof obligations (POs) generator

Parser

POG Typer

Typed B
specifications

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 23

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The big picture

B
specifications

IDExp = Ill-defined expressions
XSLTProc = XSLT processor

PhoX = Proof assistant
POG = Proof obligations (POs) generator

Parser

POG Typer

Typed B
specifications

XSL stylesheets XSLTProc

Code: Text, Html, TEX,
OCaml, Eiffel,

. . .

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 23

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The big picture

B
specifications

IDExp = Ill-defined expressions
XSLTProc = XSLT processor

PhoX = Proof assistant
POG = Proof obligations (POs) generator

Parser
Type

checker

POG Typer Flattening BtoBHLL
Simple

flattening

POs XML
Typed B

specifications
Flattened B

specifications
BHLL

specifications
Typed BHLL
specifications

XSL stylesheets XSLTProc

Code: Text, Html, TEX,
OCaml, Eiffel,

. . .
Flattened code Component

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 23

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The big picture

B
specifications

IDExp = Ill-defined expressions
XSLTProc = XSLT processor

PhoX = Proof assistant
POG = Proof obligations (POs) generator

Parser
Type

checker

POG Typer Flattening BtoBHLL
Simple

flattening

POs XML
Typed B

specifications
Flattened B

specifications
BHLL

specifications
Typed BHLL
specifications

XSL stylesheets XSLTProc

POs BPhoX

PhoX
B libraries
for PhoX

Code: Text, Html, TEX,
OCaml, Eiffel,

. . .
Flattened code Component

Proof
results

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 23

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The big picture

UML
specifications

UMLtoB
B

specifications

IDExp = Ill-defined expressions
XSLTProc = XSLT processor

PhoX = Proof assistant
POG = Proof obligations (POs) generator

Parser
Type

checker

POG Typer Flattening BtoBHLL
Simple

flattening

POs XML
Typed B

specifications
Flattened B

specifications
BHLL

specifications
Typed BHLL
specifications

XSL stylesheets XSLTProc

POs BPhoX

PhoX
B libraries
for PhoX

Code: Text, Html, TEX,
OCaml, Eiffel,

. . .
Flattened code Component

Proof
results

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 23

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

The big picture

UML
specifications

UMLtoB
B

specifications

IDExp = Ill-defined expressions
XSLTProc = XSLT processor

PhoX = Proof assistant
POG = Proof obligations (POs) generator

Parser
Type

checker

POG IDExp Typer Flattening BtoBHLL
Simple

flattening

POs XML POs IDExp
Typed B

specifications
Flattened B

specifications
BHLL

specifications
Typed BHLL
specifications

XSL stylesheets XSLTProc

POs BPhoX

PhoX
B libraries
for PhoX

Code: Text, Html, TEX,
OCaml, Eiffel,

. . .
Flattened code Component

Proof
results

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 23

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Thoughts so far

◮ What characteristics are desirable for a rigorous software
development ?

◮ High level: either the language (OCaml) or the methods
(ANTLR)

◮ The necessity of these characteristics is enforced by the
development context (Master students, PhD students)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 24

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Thoughts so far

◮ What characteristics are desirable for a rigorous software
development ?

◮ High level: either the language (OCaml) or the methods
(ANTLR)

◮ Suited: the task of each separate component suits the chosen
tool (OCaml, PhoX, XML as an exchange format)

◮ The necessity of these characteristics is enforced by the
development context (Master students, PhD students)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 24

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Thoughts so far

◮ What characteristics are desirable for a rigorous software
development ?

◮ High level: either the language (OCaml) or the methods
(ANTLR)

◮ Suited: the task of each separate component suits the chosen
tool (OCaml, PhoX, XML as an exchange format)

◮ Simple: the tools shall allow simpler development or simpler
use (PhoX usability, UML for model development)

◮ The necessity of these characteristics is enforced by the
development context (Master students, PhD students)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 24

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Thoughts so far

◮ What characteristics are desirable for a rigorous software
development ?

◮ High level: either the language (OCaml) or the methods
(ANTLR)

◮ Suited: the task of each separate component suits the chosen
tool (OCaml, PhoX, XML as an exchange format)

◮ Simple: the tools shall allow simpler development or simpler
use (PhoX usability, UML for model development)

◮ Automatic: where possible, process automatically data or
code snippets (XSL stylesheets for code generation)

◮ The necessity of these characteristics is enforced by the
development context (Master students, PhD students)

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 24

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Comparison with other tools

Let us try to give characteristics of other similar tools
◮ Rodin (event B).

◮ Eclipse IDE (simple, automatic, suited)
◮ Appeared 2004-05, event B specs published 2005-07

◮ ProB (B method)
◮ Animation, model-checking, Prolog, XML (high level, suited,

automatic)
◮ Appeared 2003-07, first alpha release 2003-10, 1.0.0 release

2004-03

◮ CZT (Community Z Tools)
◮ Similar with BRILLANT. Java, jEdit, Z extensions (suited,

simple)
◮ Appeared 2001-07, first beta release 2004-12

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 25

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Other tools
A quick glimpse

◮ ABTools (B method): programmed in Java, uses ANTLR, is
part of BRILLANT

◮ Ebba (B method): corrects some B typechecking rules,
programmed in Haskell

◮ Hets (CASL): based on algebraic specifications, programmed
in Haskell

◮ Many others...

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 26

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Undergoing and future development

◮ Treatments of ill-defined expressions in B

◮ Ergonomic interaction mode (again, based on the XML format)

◮ Move towards a communicating framework (XML-RPC)

◮ B models as projects databases (XPath, XQuery)

◮ Temporal extension of the B method [Colin et al., 2004]

◮ B event ?

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 27

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

For Further Reading I

Abrial, J.-R. (1996).
The B Book - Assigning Programs to Meanings.
Cambridge University Press.

Colin, S., Mariano, G., and Poirriez, V. (2004).
Duration calculus: A real-time semantic for B.
In First International Colloquium on Theoretical Aspects of Computing. UNU-IIST.
Guiyang, China.

Marcano, R. and Levy, N. (2002).
Using B formal specifications for analysis and verification of UML/OCL models.
In Workshop on consistency problems in UML-based software development. 5th
International Conference on the Unified Modeling Language, Dresden, Germany.

Petit, D., Poirriez, V., and Mariano, G. (2004).
The B method and the component-based approach.
Journal of Design & Process Science: Transactions of the SDPS, 8(1):65–76.
ISSN 1092-0617.

Rocheteau, J., Colin, S., Mariano, G., and Poirriez, V. (2004).

Évaluation de l’extensibilité de PhoX : B/PhoX un assistant de preuves pour B.
In Journées Francophones pour les Langages Applicatifs, pages 139–153.

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 28

History

The core tools
(BCaml)

UML/B

BPhoX

Code
generation

Conclusion &
perspectives

References

Questions

Questions ?

Colin, Petit, Rocheteau, Marcano, Mariano, Poirriez BRILLANT 29

	History
	The core tools (BCaml)
	UML/B
	BPhoX
	Code generation
	Conclusion & perspectives
	References
	Questions

