
Note de Recherche

no 15 / 2004 / LAMIH-ROI

A natural extension of B substitutions :
postconditions

Samuel Colin, Georges Mariano, Vincent Poirriez

Soumis le 21/06/2004
FSTTCS 2004 (Foundations of Software Technology and Theoretical Computer Science)

Laboratoire d’Automatique, de Mécanique et d’Informatique
industrielles et Humaines — UMR 8530 CNRS

Recherche Opérationnelle et Informatique

UNIVERSITÉ DE VALENCIENNES ET DU HAINAUT-CAMBRÉSIS

LE MONT HOUY — F-59313 VALENCIENNES CEDEX 9 — FRANCE
Secrétariat : Mme Aureggi – phone: +33 (0)3 27 51 19 41

www.univ-valenciennes.fr/LAMIH

A natural extension ofB substitutions :
postconditions

Samuel COLIN1,2 Georges MARIANO1, Vincent POIRRIEZ2

1 INRETS⋆, 20, rue Elisée RECLUS, BP 317 F-59666 Villeneuve d’Ascq Cedex, France
{First name}.{Last name}@inrets.fr

2 LAMIH ⋆⋆, UMR CNRS 5830, Le Mont Houy, 59313 Valenciennes Cedex 9, France
{First name}.{Last name}@univ-valenciennes.fr

Abstract. New approaches of programming and new extensions of the B method seem to make appear the
lack in theB method of postconditions. This paper presents a possible way for adding postconditions to theB
method without breaking its foundations and shows some of the interesting consequences of this addition, with
the help of examples.

1 Introduction

TheB method is a formal method based on four paradigms :

– Predicate calculus with set theory, which is both a mean of expressing properties and checking the correctness
of B machines

– Substitutions to describe the dynamics of the state of the variables
– Modularity, which allows the sharing and the reuse ofB developments
– Refinement, which allows the gradual progression from the abstract, mathematical specification, to the final

computer code

Roughly speaking, aB machine is said correct if its invariant hold. The invariantis a predicate describing the
state of the machine before and after the evaluation of a substitution3.

Since it was presented in [Abr96], numerous extensions havebeen proposed, some of which adding or ex-
pressing the need for postconditions inB operations :

– event B[Cle01], postconditions are introduced as a mean to expressthe state of the variables of the machine
w.r.t. their state before the corresponding event was triggered

– [Pet03] introduces postconditions for two purposes :
• Making B a contract-based development method, the precondition andthe postcondition of an operation

being normally to describe the behaviour of the substitution of this operation.
• Making the final computer code more trustworthy : in that case, the postcondition is an additional assertion

that can be embedded into the, say, final C program, to ease thedebugging of tests.
– The author itself uses postconditions as a support predicate for the generation of temporal logic formulas. This

work has not yet been published, but the interested reader can see [CPM03] for a presentation of this temporal
logic and the properties of its implementation in a general-purpose theorem-prover.

Thus, the need for postconditions is flagrant. The main problem is, while postconditions are well integrated
into event B, what is needed to have them into the “classical”B method ? That is why we present in this paper a
possible definition of postconditions in theB method, by using the inner foundations of the formalism to doso.

In the first section, we remind the reader of the properties and the mechanisms of the substitutions of the
B method, then we describe the actual definition of postconditions by using this mechanism, and illustrate the
impacts of this definition to the wayB machines are verified. Then we give some examples of the use ofpostcon-
ditions, and conclude with the new insights brought by this extension.

⋆ Institut National de REcherche sur les Transports et leur Sécurité
⋆⋆ Laboratoire d’Automatique, de Mécanique, et d’Informatique industrielles et Humaines
3 Note that in other formalisms, substitutions are rather called “state transition”

2 The B method

This section first reminds the reader of theB method, then presents a typical development with theB method
with the help of examples, and finally describes the mechanisms of the basic substitutions ofB as well as their
properties.

2.1 Presentation of theB method

TheB method allows to generate computer code, safe and prove to becorrect with respect to mathematical formal
expressions. These mathematical expressions are gatheredinto aB component calledabstract machine. They are
then refined by one or several components calledrefinements. After all these successive refinement steps, we obtain
the last component calledimplementation. All these components compose aB module. A module can depend on
several other modules, in different ways. This set of modules then forms aB project.

A B abstract machine is a description of a state that can evolve according to transitions described by the
operations of the machine. The main clauses of aB machine are :

MACHINE describing the name of the machine
SETS introducing the sets of the machine. Those sets are either abstract, or defined by the enumeration of their

elements.
VARIABLES defining the state of the machine with the help of so-called variables. The variables are the names

referred to when an update or a description of the state of themachine is needed, and can be only modified by
the operations of the machine.

INVARIANT is a predicate stating the state of the machine between operation updates. This clause must be
present if the VARIABLES clause is specified.

INITIALISATION is a B substitution defining the initial state of the machine, by specifying the values of the
machine’s variables.

OPERATIONS is a clause composed of different substitutions, whose roleis to describe the dynamical behaviour
of the machine (i.e. the possible state transitions of the machine).

2.2 An example ofB development

The MACHINE clause can be replaced by a REFINEMENT or IMPLEMENTATION one : in that case, an ad-
ditional REFINES clauses indicating which machine is refined must be provided. Now, for aB machine to be
correct, one has to ensure that its initialisation establishes the invariant, and that the invariant is kept when updat-
ing the state of the machine after an operation. AB refinement (or implementation) is correct if its operationsare
not inconsistent with those of the machine it refines, i.e. ifcalled within the same state of variables, an operation
yields at least the same result (or a more precise one) than the operation it refines.

Figure 1 shows a toy example (taken from [Mar97]) of aB development.
The machineLittleExampledefines a variabley representing a set of natural numbersy∈ F(N∗), initialised as

an empty sety := /0, and whose possible evolutions are described by the operationread(which update the variable)
andmaximum(which returns the maximum value of the set). Intuitively, the role of this machine is to return the
maximum integer among those it has been feed with.

Then comes its refinementLittleExample1, introducing a new variablez. This variable is initialised at the value
0, and its evolution is also described by operations named asin the machineLittleExample. The so-calledgluing
invariant ofLittleExample1allows to describe the relationship betweenzandy. Intuitively, this refinement behaves
the same way as the machine it refines : it keeps the maximum of the integers it has been feed with throughread,
and sends it through the operationmaximum.

TheB method allows to check that the invariant ofLittleExampleis preserved by both the initialisation and the
operation, and thatLittleExample1can replaceLittleExamplewithout machines depending on it noticing (which
is another way of stating what a refinement is).

From the machines, proof obligations are generated according to specific rules. They are logical formulas
whose proof helps ensure that the machines are correct. For instance, example 1 illustrates the proof obligation of
the read operation :[y := y∪{n}] is a substitution that is applied to the invariant in order toobtain the weakest
precondition (that is, the requirement) so as to ensure thatthe hypotheses (the invariant and the precondition) fulfil
this precondition. The rules for obtaining a weakest precondition from a substitution and a predicate are presented
in section 2.3. In example 1, after applying the substitution, one can see that the formula is trivially correct.

2

MACHINE
LittleExample

VARIABLES
y

INVARIANT
y ∈ IF(NAT1)

INITIALISATION
y :=∅

OPERATIONS
read(n) =

PRE
n∈ NAT1

THEN
y :=y ∪{n}

END;
m←−maximum =

PRE
y 6=∅

THEN
m :=max(y)

END

REFINEMENT
LittleExample1

REFINES
LittleExample

VARIABLES
z

INVARIANT
z = max(y∪{0})

INITIALISATION
z :=0

OPERATIONS
read(n) =

PRE
n∈NAT1

THEN
z :=max(z,n)

END;
m←−maximum =

PRE
z 6=0

THEN
m :=z

END

Fig. 1. Machine LittleExample and its refinement

Example 1.
y∈ F(N∗)∧n∈ N

∗⇒ [y := y∪{n}](y∈ F(N∗))
After application of the substitution :
y∈ F(N∗)∧n∈ N

∗⇒ y∪{n} ∈ F(N∗)

Example 2 presents an example of refinement proof obligation: the particular form of this formula expresses
that themaximumoperation should not establish a state where the refined one is not defined.

Example 2.

y∈ F(N∗)∧z= max(y∪{0})∧y 6= /0⇒ z 6= 0∧ [[m := m′]m := z]¬[m := max(y)]¬(z= max(y∪{0})∧m= m′)

2.3 Generalised substitutions : definition, properties

Thegeneralised substitutions4 are the core mechanism of theB method for the description of the evolution of the
machines’ state. Other substitutions presented in [Abr96]are actually syntactic sugar for GSL.

Figure 2 presents the basic substitutions ofB. Note there are more elaborate ones, like theWHILE loop, but
we don’t present them in the figure 2 because there are not necessary to understand how GSL are used.

Let us describe more precisely the role of each of those substitutions :

skip does nothing. It is used to replace a dynamic behaviour one wants only to specify in a refinement, or to build
more complex substitutions (the “IF THEN ELSE” one, for instance).

x := E is a simple assignment : thex variable now corresponds to theE value.
P|S specifies that the predicateP should be checked statically before theSsubstitution can be applied. Note that

this substitution doesn’t state anything about the behaviour of the substitution in the case it is “executed” out
of the precondition.

4 abbreviated GSL from now on

3

GSL [GSL]P description

skip P "Do nothing" substitution
x := E P[E/x] All the occurrences ofx are replaced byE
P|S P∧ [S]P Precondition
P =⇒ S P⇒ [S]P Guard
S[]T [S]P∧ [T]P Bounded choice
@x.S ∀x[S]P Unbounded choice

Fig. 2. Calculus of the weakest precondition

P =⇒ S is the dual of the precondition : it states that the substitution S is applied only if the guardP proves to be
true at execution.

S[]T states that eitherSor T is to be “executed”. This substitution is non-deterministic, i.e. we don’t know which
of its inner substitutions will be chosen at runtime. This substitution can be made more deterministic with the
help of guards (see below).

All these simple substitutions can then be used to build morecomplex control structures. For instance, the
conditional statement is defined as in example 3. The corresponding one-branch conditional statement (namely
“IF THEN”) is obtained by makingT equal toskip.

Example 3.
IF P THEN SELSET ≡ P =⇒ S[]¬P=⇒ T

Substitutions are also given a mechanism to calculate theirweakest precondition with respect to a given predi-
cate : the obtained formula is then a predicate describing the minimal (weakest) required state for the substitution
to establish the predicate it was given. In fact, this is exactly the wayB machines are checked : by proving that the
invariant is established by any operation of the machine (aswell as the initialisation of the machine). The rules to
calculate the weakest precondition of a substitution with respect to a predicate are presented in figure 2.

Then, after seeing all these formal definitions, the question arises : is there a way to characterise more formally
GSL ? The answer is affirmative, is is also presented in [Abr96]. The common, underlying shape of GSL is :

Definition 1.
S≡ P|@x′.(Q =⇒ x := x′)

whereP andQ are predicates and wherex′ is a variable distinct fromx having no free occurrence inP. The
predicateQ depends onx andx′.

Then comes another question : what are those predicates, precisely ? Before [Abr96] answers this question, it
introduces formal definitions for reasoning and characterising substitutions. These definitions are showed in figure
3.

GSL trm(GSL) prdx(GSL)

skip True True
x := E True True
P|S P∧ trm (S) P⇒ prdx(S)

P =⇒ S P⇒ trm (S) P∧prdx(S)

S[]T trm (S)∧ trm (T) prdx(S)∨prd x(T)

@z.S ∀z.trm (S) ∃z.prdx(S)

P|@x′.(Q =⇒ x := x′) P P⇒Q
x : P True [x,x0 := x′,x]P

Fig. 3. Termination and before-after predicate of substitutions

Let us precise what do the concept ofterminationandbefore-after predicatemean :

4

Termination is the minimal required condition for a substitution to be able to define a predicate. It is calculated
for the substitutionSby applying the formula :[S](x = x).

The before-after predicate prdx describes the value of the variablex when it has been “changed” by the substi-
tution. Of course, ifx doesn’t appear in the substitution, then the obtained formula describes exactly thatx has
not changed, as expected. The before-after predicate is calculated by (for the variablex) : ¬[S](x′ 6= x). Thex′

represents the state ofx w.r.t its before-value,x in the formula.

The example given in [Abr96] is :

Example 4. prdx((x := x+1)[](x := x−1))⇔ (x′ = x+1)∨ (x′ = x−1)

, which describes accurately the dynamics of the substitution.
We have also added the termination and before-after predicate for the general substitution rule and thepredi-

cate statement. The former is given for references purposes, but the latteris an interesting substitution : it defines
the state of a variable in comprehension. For instance,x : (x = x0 + 1) is such a substitution, and states that the
new value ofx is actually thebeforevalue ofx plus one. The0 index refers to the value of the variable before the
substitution is applied. Thispredicate statementis actually a shortcut for a more complex definition, as showed in
figure 4. We mention this substitution, because we will referto it in section 3.

x : P

@x′.
[x,x0 := x′,x]P
=⇒
x := x′

Fig. 4. Definition of the predicate statement

Note that in figure 4,x′ could have been named differently : it is just a helper to remind of the state variable it
represents.

Then, with the help of termination and before-after predicate, [Abr96] makes the proof that the general shape
of substitutions is actually :

Definition 2.
S≡ trm(S)|@x′.(prdx(S) =⇒ x := x′)

Thus any substitution can be easily defined, provided that the termination and the before-after predicate are
known. This mechanism is used in [Abr96] to define the parallel composition of substitutions.

2.4 A note on variables’ renamings

The section 3.3 will illustrate the use of postconditions from the point of view of another (including) machine.
That’s why we need to remind the reader of the problem of variables’ renaming when replacing an operation call
with the actual body of the called operation, and replacing the operation parameters with those of the call.

This problem is solved by the definition of substitution rules on substitutions : the rules are trivial, except for
substitutions on substitutions that might result in an ill-formed substitution. These rules are described in [Abr96,
appendice E.1].

Example 5.Let us supposex : (P(x,y)) is the body of the operationx←−Oper(y), and thatP(x,y) is a predicate
where nox0 appears (which is not possible asx is an output parameter). What happens if the operation is called
with z←−Oper(z) ?

[x,y := z,z](x←−Oper(y))
⇒ [x,y := z,z](x : P(x,y))
⇒ [x,y := z,z](@x′.[x,x0 := x′,x]P(x,y) =⇒ x := x′)
⇒ [x,y := z,z](@x′.P(x′,y) =⇒ x := x′)
⇒@x′.[x,y := z,z]P(x′,y) =⇒ [x,y := z,z](x := x′)
⇒@x′.P(x′,z) =⇒ (z := x′)

5

That is,z is updated with a value referring to itself, and verifying the predicateP, which the expected behaviour.
Notice the replacement ofx with z in the substitutionx := x′ : such a replacement is allowed only if the result in
the left-hand side of an assignment is a variable.

3 Adding postconditions toB

3.1 The existing definitions of postcondition

Postconditions have been introduced in [Cle01]. They allowthe developer to express more precisely the state of
the variables after the corresponding event has been triggered. Then one can state more complex properties of
event B machines, such as deadlock-freeness for instance.

The postconditions also have been introduced in [Pet03, 4.3.3] for theB method. They are used to allow a
contract-based development method, where the contracts are represented by the preconditions and the postcondi-
tions of these operations. Furthermore, these contracts can be embedded in the target language if it permits it. For
example, in [Pet03], the contracts from theB model can be transformed into assertions if the target language is
OCaml.

remove_element =
BEGIN

ANY
element

WHERE
element∈ set∧enable_remove =true

THEN
set :=set−{ element }

|| enable_remove :=bool (set6=∅)
END

POST
card(set)<card(set$0)

END

Fig. 5. An example of postcondition, taken from [Cle01]

Let us remember the predicate statement in section 2.3 : thissubstitution seems ideal to achieve the effect we
are looking for. Actually, this substitution has some drawbacks preventing us to use it as a postcondition :

– The scope of its indiced variables is not enough to embrace a complex substitution construction (see example
6) : the only way to have this effect would be to use a refinementstep, where the abstract operation is the lone
specification statement, and the refinement operation the substitution that actually establishes this statement.

– Except when using the refinement step indicated above, the predicate statement does not allow the hiding of
properties that would be irrelevant for including machines. Indeed, it can appear anywhere in an operation,
not specifically at the end.

Example 6.Let P(set) be a predicate about thesetvariable,S the body of the operation in figure 5, andPost its
postcondition. Let us suppose we want to know the weakest precondition so that the operationremove_element
establishesP(set). Then, using the rules and notations from [Abr96], we have :

[S;set: Post](P(set)) = [S;@set′.([set0,set:= set,set′]Post=⇒ set:= set′)](P(set)) (1)

= [S](∀set′.card(set′) < card(set)⇒ P(set′) (2)

= ∀element.element∈ set∧enable_remove= TRUE (3)

⇒ (∀set′.card(set′) < card(set\ {element})⇒ P(set′)) (4)

We see that intuitively, the result is not what was expected :the set\ {element} should have appeared in the
left-hand part of the inequation.

That is why we need to define formally,à la BBook, how we can handle postconditions.

6

3.2 Defining the POST substitution

In [Abr96, 6.3], we see that any substitution can be characterised completely by its termination (trm) and its
before-after predicate (prdx, x representing the variables of the machine). Then the authorshow how to use this
mechanism to define formally the multiple generalised substitution (||).

For readability purposes, we will note the postcondition substitution in the GSL5 as S⊲ P, whereS is a
substitution andP a predicate (the actual postcondition).

Termination of a postcondition What does it mean forS⊲ P to terminate ? The termination of a substitution
S, as stated in [Abr96], is "the predicate that holds when the substitution S ’terminates’". In other words, it is the
predicate stating all the needed conditions for S to establish something. Assumingx is a modified variable inS, let
us definetrm(S⊲ P) as :

trm(S⊲ P)≡ [x0 := x]([S]P)

This formula reads as : “Assuming thatSis a substitution andP a predicate, a postcondition built on top of these
terminates (i.e. is able to establish something) if we can verify that P is established byS”. In other words, knowing
that we mainly rely on the postcondition at the proof stage, we wantS to reflect and establish the properties we
state in its postcondition.

Before-after predicate of a postcondition Let us assume thatx is a modified variable inS. We then define the
before-after predicate ofS⊲ P w.r.t. the variablex as :

prdx(S⊲ P)≡ [x0,x := x,x′]P

As indicated in section 2.3, the before-after predicate reflects the possible states of the variables after a substi-
tution has been applied. However, we want the postconditionto be an expression of what we want for the state of
the machine w.r.t. its state before the substitution was applied. Thus, the before-after predicate of a postcondition
is no more, no less than the postcondition itself (with the appropriate variables’ renaming).

Formal definition of the postcondition As indicated in [Abr96, section 6.3.3], the predicatestrm(S) andprdx(S)
characterise completely the generalised substitution S. Thus we can give the final definition of the postcondition :

Definition 3. Assuming that x represents the modified variables of S, then we have :

S⊲ P≡ [x0 := x]([S]P)|@x′.([x0,x := x,x′]P =⇒ x := x′)

Then, to give an illustration of the use of postconditions, and to ensure that the definition is correctly written,
let us check that we fall back ontrm(S⊲ P) andprdx(S⊲ P) by using their actual definition.

Example 7.

trm(S⊲ P)
⇔ [S⊲ P](x = x) def. oftrm
⇔ [[x0 := x]([S]P)|@x′.([x0,x := x,x′]P =⇒ x := x′)](x = x) def. ofS⊲ P
⇔ [x0 := x]([S]P)∧∀x′.([x0,x := x,x′]P⇒ [x := x′](x = x))) rules for GSL
⇔ [x0 := x]([S]P)∧∀x′.([x0,x := x,x′]P⇒ x′ = x′)) def. of affectation
⇔ [x0 := x]([S]P) predicate logic

Example 8.

prdx(S⊲ P)
⇔ ¬[S⊲ P](x′ 6= x) def. of prdx

⇔ ¬([[x0 := x]([S]P)|@x′′.([x0,x := x,x′′]P =⇒ x := x′′](x′ 6= x))) def. ofS⊲ P, α-renaming
⇔ ¬([x0 := x]([S]P)∧∀x′′.([x0,x := x,x′′]P⇒ [x := x′′](x′ 6= x))) rules for GSL
⇔ (¬[x0 := x]([S]P))∨∃x′′.¬([x0,x := x,x′′]P⇒ (x′ 6= x′′)) def. of affectation, predicate logic
⇔ False∨∃x′′.¬(¬[x0,x := x,x′′]P∨ (x′ 6= x′′)) assumption oftrm(S⊲ P), predicate logic
⇔ ∃x′′.([x0,x := x,x′′]P∧x′ = x′′) predicate logic
⇔ [x0,x := x,x′]P predicate logic

5 Generalised Substitution Language

7

Examples 7 and 8, as expected, show us that our definition is sound.

3.3 Impact on proof obligations

To illustrate the influence of postconditions on proof obligations, let us first define a notation to refer to the
different parts of aB project. This notation is presented in figure 6. All indiced identifiers refer to a machine in a
refinement sequence (with the abstract machine corresponding to the index 1). Including machines are represented
by another letter (in figure 6,N is a machine that includesM1). u andw identifiers represent the output and the input
parameter of an operation respectively,v represents the variables of the machine. Now the identifiersrepresenting
more complex structures (predicates or substitutions) :

– I represents the invariant.
– P andQ represent the precondition and the postcondition of an operation respectively.
– Srepresents the body of an operation.
– OP represents the name of an operation.

MACHINE
M1

VARIABLES
vM1

INVARIANT
IM1

OPERATIONS

uM1 ←−OPM1(wM1) =
PRE

PM1

THEN
SM1

POST
QM1

END

MACHINE
N

INCLUDES
M1

VARIABLES
vN

INVARIANT
IN

OPERATIONS

uN ←−OPN(wN) =
PRE

PN
THEN

SN
; xN ←−OPM1(yN)
; TN

END

REFINEMENT
M2

REFINES
M1

VARIABLES
vM2

INVARIANT
IM2

OPERATIONS

uM2 ←−OPM2(wM2) =
PRE

PM2

THEN
SM2

END

Fig. 6.

Then, let us see how the use of a postcondition influences proof obligations. The proof obligation for the
machineM1 of figure 6 is as follows :

IM1∧PM1 ⇒ [SM1 ⊲ QM1]IM1 (5)

Note that we removed the unnecessary clauses for readability reasons. After expanding (5), we obtain :

IM1 ∧PM1⇒

{

[vM10 := vM1]([SM1]QM1)
∧∀vM1

′,uM1
′.([vM10,vM1,uM10,uM1 := vM1,vM1

′,uM1,uM1
′]QM1 ⇒ [vM1,uM1 := vM1

′,uM1
′]IM1)

(6)
Now let us see how, assuming the proof obligations for the machine have been validated, it influences the proof

obligations depending on this machine :

Influence on included machinesHere is the proof obligation for a machine including other machines :

IN∧PN∧ IM1 ⇒ [SN;xN←OPM1(yN);TN]IN (7)

Let us define first a more convenient notation to ease the readability of coming formulas.

8

Definition 4.
PostRen1x ≡ [x,x0 := x′,x]
PostRen2x ≡ [x := x′]

InstRenx(y) ≡ [x := y]

PostRenis the renaming created by the postcondition, andInstRenis the renaming caused by the instantiations
of operations’ parameters.

After expanding the operation call, we obtain :

IN∧PN∧ IM1⇒ [SN]















[InstRenuM1,wM1
(xN,yN)]PM1

∧[[InstRenuM1,wM1
(xN,yN)][vM10 := vM1][SM1]]QM1

∧[[InstRenuM1,wM1
(xN,yN)](∀vM1

′.([PostRen1vM1,uM1
]QM1

⇒ [PostRen2vM1,uM1
]]([TN]IN)))

(8)

Let us now assume we have proved the subgoal :[SN]([InstRenuM1,wM1
(xN,yN)]PM1). We know by predicate

logic that we have :

∀P,Q,R,(P⇒Q∧R)⇒ (P∧Q⇒ R) (9)

Thus, we can introduce[SN]([InstRenuM1
,wM1

(xN,yN)]PM1) (namely, the precondition of the called operation)
in the hypotheses. Additionally, by monotony of the substitution application and by the factIM1 does not contain
any variable modified by the substitution[SN][InstRenuM1,wM1

(xN,yN)], we have :

IM1 ∧ [SN]([InstRenuM1,wM1
(xN,yN)]PM1)

⇒
[SN]([[InstRenuM1

,wM1
(xN,yN)][SM1 ⊲ QM1]]IM1)

(10)

What happens if we expand (10) a little, and keep the subgoalnot depending onIM1 ? We obtain :

IM1∧ [SN]([InstRenuM1,wM1
(xN,yN)]PM1)

⇒
[SN]([InstRenuM1,wM1

(xN,yN)]([vM10 := vM1]([SM1]QM1)))
(11)

Thus, assumingIN ∧PN ∧ IM1 ⇒ [SN]([InstRenuM1,wM1
(xN,yN)]PM1) from (8), and by (9) and (11), we then

obtain for the proof obligation for an including machine :

Theorem 1. If the operation of a machine contains an operation call to anincluded machine, and the called
operation contains a postcondition, like in figure 6, then the proof obligation for this operation has the following
shape :

IN∧PN∧ IM1⇒ [SN]







[InstRenuM1,wM1
(xN,yN)]PM1

∧∀vM1
′,uM1

′.([InstRenuM1,wM1
(xN,yN)][PostRen1vM1,uM1

]QM1

⇒ [[InstRenuM1,wM1
(xN,yN)][PostRen2vM1,uM1

]]([TN]IN)))

Intuitively, all this demonstration shows that if we are able to prove that the precondition of the called operation
is verified, then we can remove from the subgoals of the proof obligation the part where we have to show that the
body of the called operation establishes its postcondition. Luckily, the proof obligation already requires us to prove
the precondition of the called operation.

On a more pragmatic note, this demonstration states that we do not need to know the actual body of the
called operation, only its pre- and postcondition. Also note there is no obligation for the final tool to remove the
verification from the including machine’s proof obligationthat the body establishes the postcondition, because
any well-designed theorem prover, knowing about the proof obligations of the included machines, can deduce that
by itself.

Influence on refinementsNow, let us see how the use of a postcondition in an abstract machine can have an
influence on its refinements. Note that, due to the appearanceof a primeduM1, the definitions ofPostRen1 and
PostRen2 are slightly changed : instead of priming once the variables, they prime them twice (we simply apply
the rules to avoid a conflict between variables’ names). The proof obligation for a refinement has the following
shape :

9

IM1∧ IM2 ∧PM1⇒ PM2 ∧ [[uM1 := uM1
′]SM2]¬[SM1 ⊲ QM1]¬(IM2 ∧uM1 = uM1

′) (12)

If we expand formula (12), we obtain :

IM1 ∧ IM2∧PM1⇒
{

PM2

∧ [[uM1 := uM1
′]SM2]¬[SM1 ⊲ QM1]¬(IM2 ∧uM1 = uM1

′)
(13)

After expandingSM1 ⊲ QM1, we have the following formula :

IM1∧ IM2∧PM1⇒














PM2

∧ [[uM1 := uM1
′]SM2]¬(

[vM10 := vM1]([SM1]QM1)
∧∀vM1

′′,uM1
′′.([PostRen1vM1,uM1

]QM1 ⇒ [PostRen2vM1,uM1
](¬(IM2 ∧uM1 = uM1

′))))

(14)
Then, we apply the negation :

IM1 ∧ IM2∧PM1⇒














PM2

∧ [[uM1 := uM1
′]SM2](

¬[vM10 := vM1]([SM1]QM1)
∨∃vM1

′′,uM1
′′.([PostRen1vM1,uM1

]]QM1 ∧ [PostRen2vM1,uM1
](IM2 ∧uM1 = uM1

′)))

(15)

The expanded formula (15) shows us an apparently strange predicate. Let us first comment about the second
part of the disjunction :[[uM1 := uM1

′]SM2] must establish :

– [PostRen1vM1
,uM1

]QM1, i.e. it must establish the postcondition of the refined operation
– [PostRen2vM1,uM1

]IM2, i.e. it must establish the invariant of the refinement
– uM1 = uM1

′, i.e. the values returned by the operation must be the same asthe ones returned by the refined
operation.

In other words, the second part of the disjunction describesthe usual steps required to prove a refinement is sound.
Then, what does the first part of the disjunction mean ? It means that the proof obligation is checked if the

operation can establish a state where the refined operation does not terminate. After a look at figure 3 in section
2.3, we see that many substitutions have a termination that reduces to theTRUEpredicate : that means that, when
calculating a refinement proof obligation, the first part of the disjunction actually reduces toFALSEmost of the
times.

Let us have a look at the informal description of refinement in[Abr96, section 11.1.1], whereT is the refine-
ment andSthe refined substitution : "T also “does more” in that it might terminate if started in situations whereS
would not have terminated. The fact thatT “does more” in this case is no problem since we useT “as if it were
S” (within the termination conditions ofS). Consequently, we will never notice thatT may do things thatS is
unable to do itself : we are merely using a refinement which is too sophisticated with respect to the corresponding
abstraction."

Thus, the seemingly strange first part of the disjunction is actually another facet of the refinement inB : it
states that a refinement is correct when it terminates in all cases where the refined operation did not terminate.

Another property of the postcondition in the case of a refinement is thestrengthening: this property is con-
firmed by our definition of the postcondition, because, in thecause the operation of the refinement has a postcon-
dition (say,QM2), then the generated proof obligation has the following shape (we replaced all the renamings with
[...] to focus on the shape of the formula) :

Proposition 1.
IM1∧ IM2∧PM1⇒






















PM2

∧ [[...]SM2]QM2

∧@x′′.[...]QM2 =⇒
¬[...]([SM1]QM1)
∨∃vM1

′.([...]QM1 ∧ [...](IM2 ∧uM1 = uM1
′)))

10

We can clearly see, by the guard, thatQM2 has to be at least as strong asQM1.

4 Examples of use

4.1 Example from [Cle01]

Let us generate the proof obligation of the operationremove_element(see figure 5) and attempt to prove it. Let :

– N be the set of naturals
– P (S) the set of all the subsets ofS
– B the set of booleans
– I ≡ set∈ P (N)∧enable_remove∈ B the invariant of the hypothetical machine of our example
– S the body of the operation without the postcondition
– P≡ card(set) < card(set0) the postcondition of the operation

Then we must check the following proof obligation for the operation to be correct :

I ⇒ [S⊲ P]I
⇔ I ⇒ ([set0 := set]([S]P)∧∀set′.([set0,set:= set,set′]P⇒ [set:= set′]I) def. ofS⊲ P, rules for GSL
⇔ I ⇒ (∀element.(element∈ set∧enable_remove= TRUE⇒ card(set\ {element}) < card(set))
∧∀set′.(card(set′) < card(set)⇒ set′ ∈ P (N)∧enable_remove′ ∈ B) rules for GSL

⇔ I ⇒ (∀set′.(card(set′) < card(set)⇒ set′ ∈ P (N)∧enable_remove′ ∈ B) predicate logic

We see that we miss a predicate in the postcondition (set∈ P (N)∧enable_remove∈ B) to be able to prove
that the operation establishes the invariant. This is no surprise, as the definition of postconditions in [Cle01] is
different from ours, and is used forevent B, whereas our definition of postcondition is applied in the context of
the “classical”B method.

4.2 Example from [Pet03, appendice A]

MACHINE
example

VARIABLES
x,y,z

INVARIANT
x ∈NAT1∧y ∈NAT1∧z∈ NAT1∧(x +y) ≤z

OPERATIONS

illustration(param) =
PRE

param∈ NAT1∧(param +z) ∈
NAT1

THEN
z :=z+param

; y←−mini(y, param)
; x :=x +1

POST
true

END...

... r←−mini(a,b) =
PRE

a∈NAT1∧b∈NAT1
THEN

hidden body
POST

r ∈ NAT1∧((r =a ∧a ≤b) ∨(r =b ∧a
>b))

END...

Fig. 7. Example of an operation call with a postcondition

With our definition of postcondition, the proof obligation for the illustration operation does not hold : the
added postcondition,TRUE, will result in a TRUE⇒ Invariant formula, which can not be proved. Thus, for

11

the postcondition to be correct, it should have contained a formula at least as strong as the machine’s invariant.
Nevertheless, the example is meant to be a toy example, thus we will assume there is no postcondition (i.e. that
the illustration operation has the shape ofOPn as in figure 6).

Thus, the proof obligation for theillustration operation is :

IN∧PN∧ IM1⇒ [SN]







[InstRenuM1,wM1
(xN,yN)]PM1

∧∀vM1
′.([InstRenuM1,wM1

(xN,yN)][PostRen1vM1,uM1
]QM1

⇒ [[InstRenuM1,wM1
(xN,yN)][PostRen2vM1,uM1

]]([TN]IN)))

x,y,z∈ N
∗∧x+y≤ z∧ param∈ N

∗∧ (param+z)∈ N
∗

⇒ [z := z+ param]







[r,a,b := y,y, param](a,b∈N
∗)

∧∀r ′.([r,a,b := y,y, param][r0, r := r, r ′](r ∈ N
∗∧ ((r = a∧a≤ b)∨ (r = b∧a > b)))

⇒ [[r,a,b := y,y, param][r := r ′]]([x := x+1](x,y,z∈N
∗∧x+y≤ z))))

After simplification, we obtain the following proof obligation :

x,y,z∈ N
∗∧x+y≤ z∧ param∈ N

∗∧ (param+z)∈ N
∗

⇒







(y, param∈N
∗)

∧∀r ′.(r ′ ∈ N
∗∧ ((r ′ = y∧y≤ param)∨ (r ′ = param∧y> param))

⇒ ((x+1, r ′,z+ param∈ N
∗∧x+1+ r ′ ≤ z+ param)))

Note that we put together some variables having the same domain in order to make the formula more readable.
The obtained formula is easily proved (the proof is left as anexercise for the interested reader). There is even
an unnecessary hypothesisparam+ z∈ N

∗, because it can be deduced fromz, param∈ N
∗ (appearing in the

hypotheses) and from the fact that the addition preserves the domain (the addition of two natural numbers is a
natural number).

5 Conclusion, perspectives

Our initial goal was to provide theB method with the expression of postconditions, with the following properties :

– The postcondition substitution should be as well-founded as the other basic substitutions.
– The postcondition must help establish the invariant of the machine.
– When generating the proof obligation for an operation containing an operation call, if the called operation has

a postcondition, then its body is not needed to verify the proof obligation.
– The postcondition of an operation should be stronger than the postcondition of the refined operation.

All these properties have been established so far. Then, allworks (see section 1) relying on postconditions will be
able to base their foundations on the definition of postcondition we gave in this paper, namely :

– The translation of postconditions fromevent B to “classical”B.
– The contract-based approach forB, i.e. allowing to defineB components by their contracts (pre- and postcon-

ditions for the operations).
– The embedding of additional assertions in the computer codegenerated from theB machines.
– The description of temporal properties of operations by using the postconditions to generate temporal formu-

las.

References

[Abr96] Jean-Raymond Abrial.The B Book - Assigning Programs to Meanings. Cambridge University Press, August 1996.
[Cle01] ClearSy. Event B reference manual, June 2001.
[CPM03] Samuel Colin, Vincent Poirriez, and Georges Mariano. Thoughts about the implementation of the duration calculus

with coq. In4th International Workshop on the Implementation of Logics, volume Technical report ULCS-03-018.
University of Liverpool, september 2003. http://www.csc.liv.ac.uk/research/techreports/.

[Mar97] Georges Mariano.Évaluation de logiciels critiques développés par la méthode B : une approche quantitative. Thèse
de doctorat, Universitée de Valenciennes et du Hainaut-Cambrésis, Dec 1997.

[Pet03] Dorian Petit.Génération automatique de composants logiciels sûrs à partir de spécifications formelles B. Thèse de
doctorat, Université de Valenciennes et du Hainaut-Cambrésis, December 2003.

12

