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Abstract. New approaches of programming and new extensions of the Badeteem to make appear the
lack in theB method of postconditions. This paper presents a possibjdavadding postconditions to tHe
method without breaking its foundations and shows somesoiitferesting consequences of this addition, with
the help of examples.

1 Introduction

TheB method is a formal method based on four paradigms :

Predicate calculus with set theory, which is both a mean pffesssing properties and checking the correctness
of B machines

Substitutions to describe the dynamics of the state of thahas

Modularity, which allows the sharing and the reus@®afevelopments

Refinement, which allows the gradual progression from thetrabt, mathematical specification, to the final
computer code

Roughly speaking, B machine is said correct if its invariant hold. The invaried predicate describing the
state of the machine before and after the evaluation of aigutizn?.

Since it was presented in [Abr96], numerous extensions baea proposed, some of which adding or ex-
pressing the need for postcondition®Bmoperations :

— event B[Cle01], postconditions are introduced as a mean to expinesstate of the variables of the machine
w.r.t. their state before the corresponding event was erigg)
— [Pet03] introduces postconditions for two purposes :
e Making B a contract-based development method, the preconditiothenplostcondition of an operation
being normally to describe the behaviour of the substitutibthis operation.
e Making the final computer code more trustworthy : in that cisepostcondition is an additional assertion
that can be embedded into the, say, final C program, to easietugging of tests.
— The author itself uses postconditions as a support predicathe generation of temporal logic formulas. This
work has not yet been published, but the interested readesema[CPMO03] for a presentation of this temporal
logic and the properties of its implementation in a genprapose theorem-prover.

Thus, the need for postconditions is flagrant. The main erolk, while postconditions are well integrated
into event B, what is needed to have them into the “classi@rhethod ? That is why we present in this paper a
possible definition of postconditions in tBemethod, by using the inner foundations of the formalism t@ado

In the first section, we remind the reader of the propertiestae mechanisms of the substitutions of the
B method, then we describe the actual definition of postcanditby using this mechanism, and illustrate the
impacts of this definition to the way machines are verified. Then we give some examples of the ysastfon-
ditions, and conclude with the new insights brought by tikieesion.
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2 TheB method

This section first reminds the reader of tBemethod, then presents a typical development withBhmethod
with the help of examples, and finally describes the mechanisf the basic substitutions 8fas well as their
properties.

2.1 Presentation of theB method

TheB method allows to generate computer code, safe and provedorkect with respect to mathematical formal
expressions. These mathematical expressions are gathtred® component calledbstract machineThey are
then refined by one or several components cadidementsAfter all these successive refinement steps, we obtain
the last component calléchplementationAll these components compos®&anodule A module can depend on
several other modules, in different ways. This set of maglthen forms @& project.

A B abstract machine is a description of a state that can evalverding to transitions described by the
operations of the machine. The main clausesBfraachine are :

MACHINE describing the name of the machine

SETS introducing the sets of the machine. Those sets are eitlstraah or defined by the enumeration of their
elements.

VARIABLES defining the state of the machine with the help of so-callediées. The variables are the names
referred to when an update or a description of the state ahtiehine is needed, and can be only modified by
the operations of the machine.

INVARIANT is a predicate stating the state of the machine between tigrer@pdates. This clause must be
present if the VARIABLES clause is specified.

INITIALISATION is aB substitution defining the initial state of the machine, bggfying the values of the
machine’s variables.

OPERATIONS is a clause composed of different substitutions, whoseasatedescribe the dynamical behaviour
of the machine (i.e. the possible state transitions of thehina).

2.2 Anexample ofB development

The MACHINE clause can be replaced by a REFINEMENT or IMPLEWVIRTION one : in that case, an ad-
ditional REFINES clauses indicating which machine is refineust be provided. Now, for B machine to be
correct, one has to ensure that its initialisation esthbighe invariant, and that the invariant is kept when updat-
ing the state of the machine after an operatio® fefinement (or implementation) is correct if its operatians

not inconsistent with those of the machine it refines, i.ealfed within the same state of variables, an operation
yields at least the same result (or a more precise one) tieamptration it refines.

Figure 1 shows a toy example (taken from [Mar97]) & development.

The machind.ittleExampledefines a variablg representing a set of natural numbgrsF(N*), initialised as
an empty sey := 0, and whose possible evolutions are described by the oparaad (which update the variable)
andmaximum(which returns the maximum value of the set). Intuitivehg role of this machine is to return the
maximum integer among those it has been feed with.

Then comes its refinemehittieExamplelintroducing a new variable This variable is initialised at the value
0, and its evolution is also described by operations naméud the machind.ittleExample The so-calledjluing
invariant ofLittleExamplelallows to describe the relationship betweemdy. Intuitively, this refinement behaves
the same way as the machine it refines : it keeps the maximuneéfitegers it has been feed with throughd,
and sends it through the operatim@aximum

TheB method allows to check that the invariantdttleExamplds preserved by both the initialisation and the
operation, and thdtittleExamplelcan replacé.ittleExamplewithout machines depending on it noticing (which
is another way of stating what a refinement is).

From the machines, proof obligations are generated acaptdi specific rules. They are logical formulas
whose proof helps ensure that the machines are correctngtanice, example 1 illustrates the proof obligation of
theread operation :[y := yU{n}] is a substitution that is applied to the invariant in ordeolain the weakest
precondition (that is, the requirement) so as to ensurdhedtypotheses (the invariant and the precondition) fulfil
this precondition. The rules for obtaining a weakest prédwmn from a substitution and a predicate are presented
in section 2.3. In example 1, after applying the substitytame can see that the formula is trivially correct.



REFINEMENT
MACHINE LittleExamplel
LittleExample REFINES
VARIABLES LittleExample
y VARIABLES
INVARIANT z
y € IF(NAT1) INVARIANT
INITIALISATION z = max(y{0})
y =0 INITIALISATION
OPERATIONS z:=0
read(n) = OPERATIONS
PRE read(n) =
n e NAT1 PRE
THEN nc NAT1
y =y U{n} THEN
END; z :=max(z,n)
m «——maximum = END;
PRE m «——maximum =
y #& PRE
THEN z#0
m :=max(y) THEN
END m:=z
END
Fig. 1. Machine LittleExample and its refinement
Example 1.

ye F(N*)Ane N* = [y:=yU{n}](y € F(N*))
After application of the substitution :
ye F(N*)Ane N* = yU{n} € F(N*)

Example 2 presents an example of refinement proof obligatioa particular form of this formula expresses
that themaximurnoperation should not establish a state where the refinedsora defined.

Example 2.

yeF(N*)Az=maxyU{0}) Ay# 0=z OA[[m:=m]m:=Z-[m:= maxy)]-(z= maxyu {0}) Am=n)

2.3 Generalised substitutions : definition, properties

Thegeneralised substitutiofisre the core mechanism of tBemethod for the description of the evolution of the
machines’ state. Other substitutions presented in [Aba@&actually syntactic sugar for GSL.

Figure 2 presents the basic substitution8ofNote there are more elaborate ones, like\idILE loop, but
we don’t present them in the figure 2 because there are nossegeto understand how GSL are used.

Let us describe more precisely the role of each of those isutishs :

skip does nothing. Itis used to replace a dynamic behaviour omésvemly to specify in a refinement, or to build
more complex substitutions (the “IF THEN ELSE” one, for mrste).

x:=E is a simple assignment : thxevariable now corresponds to tkevalue.

P|S specifies that the predicaBeshould be checked statically before tBsubstitution can be applied. Note that

this substitution doesn’t state anything about the behabthe substitution in the case it is “executed” out
of the precondition.

4 abbreviated GSL from now on



|GSL [[GSP |description

skip P "Do nothing" substitution

x:=E PIE/X] All the occurrences of are replaced bi
P|S PA[SP Precondition

P=S P=[§P Guard

ST [SPA[T]P Bounded choice

@x.S YX[SIP Unbounded choice

Fig. 2. Calculus of the weakest precondition

P —> S is the dual of the precondition : it states that the sub#itu® is applied only if the guar® proves to be
true at execution.
S|T states that eitheBor T is to be “executed”. This substitution is non-determimistie. we don’t know which

of its inner substitutions will be chosen at runtime. Thibstitution can be made more deterministic with the
help of guards (see below).

All these simple substitutions can then be used to build ngoreplex control structures. For instance, the

conditional statement is defined as in example 3. The carrelipg one-branch conditional statement (namely
“IF THEN") is obtained by making@ equal toskip.

Example 3.
IFPTHENSELSET =P— §-P=T

Substitutions are also given a mechanism to calculatewesikest precondition with respect to a given predi-
cate : the obtained formula is then a predicate describiagriimimal (weakest) required state for the substitution
to establish the predicate it was given. In fact, this is gydle wayB machines are checked : by proving that the
invariant is established by any operation of the machinev@bkas the initialisation of the machine). The rules to
calculate the weakest precondition of a substitution wadpect to a predicate are presented in figure 2.

Then, after seeing all these formal definitions, the quastitses : is there a way to characterise more formally
GSL ? The answer is affirmative, is is also presented in [AprBiée common, underlying shape of GSL is :

Definition 1.
S=P|@X.(Q=x:=X)

whereP andQ are predicates and whexeis a variable distinct fronx having no free occurrence . The
predicateQ depends ox andx'.
Then comes another question : what are those predicatessglye? Before [Abr96] answers this question, it

introduces formal definitions for reasoning and charasitegisubstitutions. These definitions are showed in figure
3.

|GSL trm(GSD) [prox(GSL)

skip True True

x:=E True True

P|S PAtrm (S) P = prd,(S
P—S P=trm (9 PAprd, (S

ST trm (S)Atrm (T) prd,(S) v prd,(T)
@z.S Vz.trm (S) Jz.prd,(S)
Pl@X.(Q = x:=X) P P=Q

x:P True [%, %0 := X, x|P

Fig. 3. Termination and before-after predicate of substitutions

Let us precise what do the conceptefminationandbefore-after predicatenean :




Termination is the minimal required condition for a substitution to béeato define a predicate. It is calculated
for the substitutiors by applying the formula [S](x = x).

The before-after predicate prdx describes the value of the varialdevhen it has been “changed” by the substi-
tution. Of course, ik doesn’t appear in the substitution, then the obtained ftamiescribes exactly thathas
not changed, as expected. The before-after predicatecislasd by (for the variabhg) : =[S(X' # x). Thex
represents the state wfv.r.t its before-valuex in the formula.

The example given in [Abr96] is :
Example 4. prd(x:=x+1)|J(x:=x—-1)) =& X =x+1) V(X =x—1)

, which describes accurately the dynamics of the substituti

We have also added the termination and before-after priedicathe general substitution rule and tredi-
cate statemeni he former is given for references purposes, but the la&ten interesting substitution : it defines
the state of a variable in comprehension. For instarcéx = Xp + 1) is such a substitution, and states that the
new value of is actually thebeforevalue ofx plus one. The index refers to the value of the variable before the
substitution is applied. Thisredicate statemeiis actually a shortcut for a more complex definition, as shwine
figure 4. We mention this substitution, because we will r&det in section 3.

@x.
[X, %0 1= X, X|P

X=X

Fig. 4. Definition of the predicate statement

Note that in figure 4x’ could have been named differently : it is just a helper to rehaif the state variable it
represents.

Then, with the help of termination and before-after preicpAbr96] makes the proof that the general shape
of substitutions is actually :

Definition 2.
S=trm(S)|@X.(prdx(S) = x:=X)

Thus any substitution can be easily defined, provided theatetmination and the before-after predicate are
known. This mechanism is used in [Abr96] to define the pdratieposition of substitutions.

2.4 A note on variables’ renamings

The section 3.3 will illustrate the use of postconditioranfrthe point of view of another (including) machine.
That's why we need to remind the reader of the problem of & renaming when replacing an operation call
with the actual body of the called operation, and repladigdperation parameters with those of the call.

This problem is solved by the definition of substitution sute substitutions : the rules are trivial, except for
substitutions on substitutions that might result in aridimed substitution. These rules are described in [Abr96,
appendice E.1].

Example 5.Let us supposg: (P(x,y)) is the body of the operation—— Oper(y), and thaP(x,y) is a predicate
where noxg appears (which is not possible s an output parameter). What happens if the operation isctal
with z—— Oper(z) ?

[,y :=2,7(x — Opery))
= [xy:=zZ(x:P(xy))
= [xY:=27Z(@X.[x,X0 ;= X,X]P(x,y) = x:=X)
= [Xy: :zz](@x P(X,y) = x:=X)
= @X.[xy:=2ZPXX,y) = [xy:=z2Z(x:=X)
= @x.P(X, z):>(z::x’)



Thatis,zis updated with a value referring to itself, and verifying firedicaté®, which the expected behaviour.
Notice the replacement afwith zin the substitutionx := X’ : such a replacement is allowed only if the result in
the left-hand side of an assignment is a variable.

3 Adding postconditions toB

3.1 The existing definitions of postcondition

Postconditions have been introduced in [Cle01]. They atlvsvdeveloper to express more precisely the state of
the variables after the corresponding event has been tegg&hen one can state more complex properties of
event B machines, such as deadlock-freeness for instance.

The postconditions also have been introduced in [Pet033Uf@ the B method. They are used to allow a
contract-based development method, where the contractepresented by the preconditions and the postcondi-
tions of these operations. Furthermore, these contrasteeambedded in the target language if it permits it. For
example, in [Pet03], the contracts from tBamodel can be transformed into assertions if the target lagegs
OCaml.

remove_element =
BEGIN

ANY
element

WHERE
elemente setAenable_removetrue

THEN
set :=set-{ element }

|| enable_remove :=bool ( s¢t)

END
POST

card(setkcard(set$0)
END

Fig. 5. An example of postcondition, taken from [Cle01]

Let us remember the predicate statement in section 2.3 stibistitution seems ideal to achieve the effect we
are looking for. Actually, this substitution has some dragks preventing us to use it as a postcondition :

— The scope of its indiced variables is not enough to embracemglex substitution construction (see example
6) : the only way to have this effect would be to use a refinerstaqt, where the abstract operation is the lone
specification statement, and the refinement operation th&tisution that actually establishes this statement.

— Except when using the refinement step indicated above, #digate statement does not allow the hiding of
properties that would be irrelevant for including machifesleed, it can appear anywhere in an operation,
not specifically at the end.

Example 6.Let P(set) be a predicate about tteet variable,Sthe body of the operation in figure 5, aRdstits
postcondition. Let us suppose we want to know the weakesbpdition so that the operatiaemove element
establishe®(set). Then, using the rules and notations from [Abr96], we have :

[S;set: Pos{(P(set)) = [S, @set.([seb, set:= set set]Post= set:= set)](P(set)) 1)
= [§(vset.card(set) < card(set) = P(set) ()

= Velementelemente setA enable remove= TRUE 3)

= (Vset.card(set) < card(set\ {elemen}) = P(set)) (4)

We see that intuitively, the result is not what was expectttk set\ {elemen} should have appeared in the
left-hand part of the inequation.

That is why we need to define formalByJa BBook how we can handle postconditions.



3.2 Defining the POST substitution

In [Abr96, 6.3], we see that any substitution can be charseteé completely by its terminatiotirm) and its
before-after predicatepfdy, x representing the variables of the machine). Then the asthmm how to use this
mechanism to define formally the multiple generalised stultitn (||).

For readability purposes, we will note the postconditiobssitution in the GSP asS> P, whereSis a
substitution andP a predicate (the actual postcondition).

Termination of a postcondition What does it mean foBr> P to terminate ? The termination of a substitution
S, as stated in [Abr96], is "the predicate that holds when thesstution S 'terminates™. In other words, it is the
predicate stating all the needed conditions for S to estallbmething. Assumingis a modified variable i1$, let

us defindrm(Sc> P) as :

trm(S> P) = [0 := X|([SP)

This formulareads as : “Assuming ttais a substitution anB a predicate, a postcondition built on top of these
terminates (i.e. is able to establish something) if we caifiythat P is established b$'. In other words, knowing
that we mainly rely on the postcondition at the proof stage wantS to reflect and establish the properties we
state in its postcondition.

Before-after predicate of a postcondition Let us assume thatis a modified variable irs. We then define the
before-after predicate & P w.r.t. the variablecas :

prdx(St> P) = [x0,X 1= x,X|P
As indicated in section 2.3, the before-after predicatectslthe possible states of the variables after a substi-
tution has been applied. However, we want the postconditidie an expression of what we want for the state of
the machine w.r.t. its state before the substitution wadieghpl hus, the before-after predicate of a postcondition
is no more, no less than the postcondition itself (with thegrapriate variables’ renaming).

Formal definition of the postcondition As indicated in [Abr96, section 6.3.3], the predicates(S) andprdy(S)
characterise completely the generalised substitutiorn8s We can give the final definition of the postcondition :

Definition 3. Assuming that x represents the modified variables of S, tledrawe :
St P =[x :=X([JP)|@X.([%0,X 1= X,X]P = x:=X)

Then, to give an illustration of the use of postconditioms] o ensure that the definition is correctly written,
let us check that we fall back drm(St> P) andprdx(St> P) by using their actual definition.

Example 7.
trm(S>> P)
&[St P](x=X) def. oftrm
< (%o :=X([SP)|@X.([X0,X := X, X|P = x:=X)| (X =X) def. of S>> P
< [Xo :=X([FP) AVX.([X0,X:=x,X|P = [x:=X](x=X)))  rules for GSL
< %o := X ([FP) AVX.([X0,X: =X, X|P =X =X)) def. of affectation
< %o =X ([gP) predicate logic
Example 8.
prdy(Sc> P)
& =[S PI(X #X) def. of prdx
< =([[x0 :=X[([FP)|@X".([X0,X := X, X"|P = x:= X"](X #X))) def. of S>> P, a-renaming
< (%o ;=X ([FP) AVX".([%0, X := X, X"]P = [x:=X"](X #X))) rules for GSL
& (2% =X ([FP)) vV IX' .= ([X0, X := X, X"|P = (X #X")) def. of affectation, predicate logic
< FalseV 3IX’.—(=[xo, X :=x,X"|PV (X #X")) assumption ofrm(St> P), predicate logic
< X (X0, X:=XX"TPAX =X") predicate logic
& [Xp,X:=Xx,X]P predicate logic

5 Generalised Substitution Language



Examples 7 and 8, as expected, show us that our definitiomigdso

3.3 Impact on proof obligations

To illustrate the influence of postconditions on proof oatigns, let us first define a notation to refer to the
different parts of @& project. This notation is presented in figure 6. All indicddritifiers refer to a machine in a
refinement sequence (with the abstract machine correspgtalihe index 1). Including machines are represented
by another letter (in figure & is a machine that includé$;). u andw identifiers represent the output and the input

parameter of an operation respectivelyepresents the variables of the machine. Now the identifggnesenting
more complex structures (predicates or substitutions) :

— | represents the invariant.

— P andQ represent the precondition and the postcondition of anatiperrespectively.
— Srepresents the body of an operation.

— OPrepresents the name of an operation.

MACHINE
MACHINE N REFINEMENT
My INCLUDES M2
VARIABLES My REFINES
VM, VARIABLES My
INVARIANT W VARIABLES
vy INVARIANT M,
OPERATIONS N INVARIANT
OPERATIONS IM2
Uwm, «—ORw, (Wwm,) = OPERATIONS
PRE Uy «—OR(wn) =
Py, PRE Um, «—ORy,(Ww,) =
THEN Py PRE
Swy THEN Pu,
POST Sy THEN
Qw, ; XN <—ORy, (Yn) S,
END “Th END
END

Fig. 6.

Then, let us see how the use of a postcondition influenced pidigations. The proof obligation for the
machineM; of figure 6 is as follows :

Imy A Pwy = [SMl > QMl]IMl )
Note that we removed the unnecessary clauses for reaglabdisons. After expanding (5), we obtain :

I, APy, = [VMlo = VMl]([SMl]QMl)
! 1 /\VVM]_/;uMll-([VM107VM17uM105uM1 = VM17VM1/;UM1;UM1/]QM1 = [VM17UM1 = VMl/’uMll]IMl)
(6)
Now let us see how, assuming the proof obligations for thehimechave been validated, it influences the proof
obligations depending on this machine :

Influence on included machinddere is the proof obligation for a machine including othechiaes :

INAPNATM, = [Su;Xn < ORv, (Yn); Tn]In (7)
Let us define first a more convenient notation to ease the bdagaf coming formulas.



Definition 4.

PostRefy = [x, %o 1= X, X|
PostReBy = [x:=X]
InstReRr(y) = [x:=Y]

PostReris the renaming created by the postcondition, BrstiReris the renaming caused by the instantiations
of operations’ parameters.
After expanding the operation call, we obtain :

[InstReRy, wy, (XN, YN)] Py

Al[InstReRy, wy, (XN, YN)] VM1 = Vivy ] [Sv,]]Qwmy

A[[InstRemy, wy, (8, YN)](VWm, " ([PostRety, vy, |Qw,
= [PostReBy, uy, 1I([Tn]In)))

INAPNA M, = [SN] (8)

Let us now assume we have proved the subg@@{J{([InstReqy, wy, (Xn,Yn)]Pu,). We know by predicate
logic that we have :

VP,Q,R,(P=QAR) = (PAQ=R) 9

Thus, we can introduc&y]([InstRemy, wy, (Xn,Yn)]Pu,) (namely, the precondition of the called operation)
in the hypotheses. Additionally, by monotony of the sub$tin application and by the fatf;, does not contain
any variable modified by the substitutig®][InstRery, w,, (Xn,Yn)], we have :

Imy A [SN] ([InStReli7WM1 (XN, YN)] Py, )
N (10)
[S'\l]([[lnStRemMrWMl (6, YN [Smy > Qua ]Iy )

What happens if we expand (10) a little, and keep the subgualepending oy, ? We obtain :

Iy A [Su] ([InStReRy, i, (X5 YN)]Pwy )
N (11)
[Sn]([InstRemy, wy, O, YN)T (Vg g = Vg [ ([Sw,]Quy )

Thus, assumingn A Py A Iy, = [SN]([InstRemMr\,\,M1 (XN, Yn)]Pw, ) from (8), and by (9) and (11), we then
obtain for the proof obligation for an including machine :

Theorem 1. If the operation of a machine contains an operation call toiacluded machine, and the called
operation contains a postcondition, like in figure 6, thea pioof obligation for this operation has the following
shape:
L nStRemMrWMl (XN, YN))] P,
INAPN AT, = [SN] { AW, ", Um, " ([InstReny,, wy, (XN, Yn)][PostRety,, uy, JQw,
= [[InstReqy, wy, (Xn, Yn)][PostReBy, uy, J([Tn]IN)))

Intuitively, all this demonstration shows that if we areetd prove that the precondition of the called operation
is verified, then we can remove from the subgoals of the prblifation the part where we have to show that the
body of the called operation establishes its postconditinokily, the proof obligation already requires us to prove
the precondition of the called operation.

On a more pragmatic note, this demonstration states thatomeotineed to know the actual body of the
called operation, only its pre- and postcondition. Alsoeribiere is no obligation for the final tool to remove the
verification from the including machine’s proof obligatitimt the body establishes the postcondition, because
any well-designed theorem prover, knowing about the prbtfations of the included machines, can deduce that
by itself.

Influence on refinementdlow, let us see how the use of a postcondition in an abstrachima can have an
influence on its refinements. Note that, due to the appeanerimeduy,, the definitions ofPostRe and
PostRea are slightly changed : instead of priming once the varghleey prime them twice (we simply apply
the rules to avoid a conflict between variables’ names). Thefbligation for a refinement has the following
shape:



IMl A IMz A PMl = PMz A [[uMl = uMll]SVlz]_‘[SMl > QMl]ﬁ(IMz AUm; = uMll) (12)
If we expand formula (12), we obtain :

Im; A, APy, =
P, (13)
A [[umy 2= Uny1Sw,]=[Swy B Quy]= (I, Aty = Uny”)
After expandingSy, > Qw,, we have the following formula :

Img Almp, APy, =
2
A [[um, = uMll]S\Az]_‘(
[VM10 = VMl]([SMl]QMl)
AV, " U, ([PostRetlyy uy, JQu, = [PostReRy, uy, J(—(Im, Aum, = uwm,”))))

(14)
Then, we apply the negation :
Img Almy, APy, =
P,
A [[uMl = uMl/]S\AZ]( (15)

ﬁ[VMlo = VMl]([SVll]QMl)
V 3, ”, Um, " ([PostRefy,, uy, ]]Qu; A [PostReBuy, uy, |(Imy AU, = Uny")))

The expanded formula (15) shows us an apparently strangicpte. Let us first comment about the second
part of the disjunction {[um, := uwm,']Su,] must establish :

— [PostRefy, uy, |Qu,, i.e. it must establish the postcondition of the refined afien

— [PostReRy,, uy, JIm,, i.€. it must establish the invariant of the refinement

— Um, = Uy, i.e. the values returned by the operation must be the sartteeames returned by the refined
operation.

In other words, the second part of the disjunction desctibesisual steps required to prove a refinement is sound.

Then, what does the first part of the disjunction mean ? It mélaat the proof obligation is checked if the
operation can establish a state where the refined operatiEmrbt terminate. After a look at figure 3 in section
2.3, we see that many substitutions have a termination ¢idlaices to th& RUE predicate : that means that, when
calculating a refinement proof obligation, the first partha# tlisjunction actually reduces EALSEmost of the
times.

Let us have a look at the informal description of refinemerjiAior96, section 11.1.1], wher€ is the refine-
ment andSthe refined substitution T*also “does more” in that it might terminate if started in ations wheres
would not have terminated. The fact thatdoes more” in this case is no problem since we Us&s if it were
S’ (within the termination conditions o). Consequently, we will never notice th&tmay do things thaSis
unable to do itself : we are merely using a refinement whichassbphisticated with respect to the corresponding
abstraction."

Thus, the seemingly strange first part of the disjunctiorcisi@ly another facet of the refinementhn: it
states that a refinement is correct when it terminates irealtg where the refined operation did not terminate.

Another property of the postcondition in the case of a refiaeinis thestrengthening this property is con-
firmed by our definition of the postcondition, because, indhese the operation of the refinement has a postcon-
dition (say,Qwm,), then the generated proof obligation has the followingshave replaced all the renamings with
[...] to focus on the shape of the formula) :

Proposition 1.
Im; A, APy, =
P,
A [[]S\Az]QMz
A @X".[..]JQu, =
[ ([Sw,]Qwmy )
v 3vy ([ ]Quy A L] (T, Aumy = Uy ')
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We can clearly see, by the guard, tki, has to be at least as strong@s, .

4 Examples of use

4.1 Example from [Cle01]

Let us generate the proof obligation of the operatEemove element(see figure 5) and attempt to prove it. Let :

— N be the set of naturals

— P(S) the set of all the subsets 6&f

— B the set of booleans

— | =sete P(N) Aenable removes B the invariant of the hypothetical machine of our example
— Sthe body of the operation without the postcondition

— P =card(set) < card(sep) the postcondition of the operation

Then we must check the following proof obligation for the gi®n to be correct :

| =[S Pl
< | = ([seb:=sef([JP) AVset.([seb, set:= set set]P = [set:= set]l) def. of S>> P, rules for GSL
< | = (Velement(elemente setA enable remove= T RU E=- card(set\ {elemen}) < card(set))

AVset.(card(set) < card(set) = set € P(N) Aenableremové < B) rules for GSL
< | = (Vset.(card(set) < card(set) = set € P(N) Aenableremovéc B) predicate logic

We see that we miss a predicate in the postconditieet € 2(N) A enable removec B ) to be able to prove
that the operation establishes the invariant. This is npri&e, as the definition of postconditions in [Cle01] is
different from ours, and is used fevent B, whereas our definition of postcondition is applied in thateat of
the “classical’B method.

4.2 Example from [Pet03, appendice A]

MACHINE
example
VARIABLES
X,¥,Z
INVARIANT L
x € NATIAY € NAT1Az € NATIA(X +y) <z .“;;Emmmam=
OPERATIONS ac NATIAb € NAT1
_ _ THEN
illustration(param) = hidden body
PRE POST
EX$TEENATprwam+1)€ r € NATIA( (r =a Aa <b) V(r =b ra
THEN b))
7 =2 4+ param END...
;Y «—mini(y, param)
;X=X 41
POST
true
END...

Fig. 7. Example of an operation call with a postcondition

With our definition of postcondition, the proof obligatioarfthe illustration operation does not hold : the
added postconditiorif RUE, will result in aTRUE =- Invariant formula, which can not be proved. Thus, for
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the postcondition to be correct, it should have containearitla at least as strong as the machine’s invariant.
Nevertheless, the example is meant to be a toy example, thugihvassume there is no postcondition (i.e. that
theillustration operation has the shape®#f, as in figure 6).

Thus, the proof obligation for thidustration operation is :

[InstReri]Ml,wMl (XN, YN) [Py
InAPN AT, = [Su]{ AW, ((INStReRy, wy, (XN, Yn)][POStRety,, uy, 1Qw,
= [[InstRemy, wy, (Xn, yn)][PostRedy,, uy, I1([Tn]In)))

X, ¥,z € N* Ax+y < zA parame N* A (param+z) € N*
[r,a,b:=y,y paranij(a,b e N*)
= [z:=z+ param { AVr'.([r,a,b:=Yy,y, paran[ro,r :=r1,r’}(r e N*A((r=ana<b)V(r=bAa>bh)))
= [[ra,b:=yy, paran[r :=r']]([x:=x+1](X,y,z€ N* Ax+y < 2))))

After simplification, we obtain the following proof obligah :

X,¥,z € N* Ax+y < zA parame N* A (param+z) € N*
(y, parame N*)
=< AV.(F e N*A((M =yAy < param) V (r' = paramAy > param))
= ((x+1,r",z+ parame N* Ax+ 1+r' < z+ param)))

Note that we put together some variables having the sameidamarder to make the formula more readable.
The obtained formula is easily proved (the proof is left azgearcise for the interested reader). There is even
an unnecessary hypothegiaram+ z € N*, because it can be deduced framparame N* (appearing in the
hypotheses) and from the fact that the addition presenesgdimain (the addition of two natural numbers is a
natural number).

5 Conclusion, perspectives

Our initial goal was to provide thB method with the expression of postconditions, with thedfelhg properties :

— The postcondition substitution should be as well-foundetha other basic substitutions.

— The postcondition must help establish the invariant of tlagmme.

— When generating the proof obligation for an operation coirig an operation call, if the called operation has
a postcondition, then its body is not needed to verify thepobligation.

— The postcondition of an operation should be stronger thampdstcondition of the refined operation.

All these properties have been established so far. Thewpakls (see section 1) relying on postconditions will be
able to base their foundations on the definition of postdiomive gave in this paper, namely :

— The translation of postconditions froesent B to “classical’B.

— The contract-based approach Ryri.e. allowing to defind components by their contracts (pre- and postcon-
ditions for the operations).

— The embedding of additional assertions in the computer gederated from thB machines.

— The description of temporal properties of operations bypgi$he postconditions to generate temporal formu-
las.
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