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Abstract. Among the possible approaches for expressing real-timblgmts with theB method, two are
dominant : the use of the usuadlmechanisms to define temporal constraints on the one hadexéendingB
through another formalism more adapted to the real-timéesoon the other hand.

We define here a possible temporal semantidfoby using a temporal logic (the duration calculus), and we
illustrate how this extension affects the proof mechaniseduto show the soundness of abstract machines.

1 Introduction

For several years, feedback on the use of formal methodsiinttustrial field has been, in majority, positive.
Indeed, for instance, thB method showed its strength in helping the conception oftgatfetical systems (for
instance, the famous example of line number 14 of the Parsiaway [BBFM99]).

However, the possibilities offered by the formal methodssta evolve at the same time as industrial needs do.
Viable methods for the validation of non-functional coasits appear gradually : among them are the temporally-
constrained problems. Indeed, the field of embedded desiv@®€mbedded software has great need of methods
allowing the designing of solutions including time managem and also, in the case of critical systems, the
checking of thevalidity of these solutions.

Such methods already exist, but often show drawbacks thaheke the study of some cases difficult :

— Model-checking methods are suitable for the validationttdélproblems, but when composing those prob-
lems to have them interact, the number of cases increaseaticaity. There are methods to avoid this prob-
lem partially, but they involve often abstract interpratat which is actually a way of giving semantics to
languages.

— Methods using temporal automatas have good compositigpatiperties, but do not allow the description of
the step from the abstract modelisation to computer code.

Then the idea of merging these design methods with form@uages and/or methods ensues, so one can
benefit from both sides :

— Easy validation of temporal constraints from the tempavatfalism part
— Properties of modularity, compositionality and proximitith computer code from the language part.

In the next sections, we present a method to obtain a fornogl &lowing the checking of both functional
and temporal properties of a given problem, by defining a tmadgsemantic for th8 method. We first describe
the formalism used to express this semantic, the duratilwales® then we remind the reader of the properties of
the B method. Later on, we describe more in detail a temporal séonfan B, and end up with the possibilities
brought by this approach.

2 Duration calculus

From the site ([DCa]) : "The duration calculus is a modal ¢ofgir describing and reasoning about the real-time
behaviour of dynamic systems, where states change oveatishare represented by functions from time (reals)
to the Boolean values (0 and 1). It is an extension of InteFeatporal Logié [Dut95], but with continuous time,
and uses integrated durations of states as interval tetngoiables. Assuming finite variability of state functions
the axioms and rules of the DC constitute a complete loglatfve to Interval Temporal Logic)."
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2.1 History

Research on a temporal logic more powerful than "classioédtval temporal logic (see [Dut95]) was initiated
by the ProCo3%project of the ESPRITprogram, in the BRA 3104 and 7071 working groups.

This initiative led in 1990 to the paper entitled "A calculosdurations” [ZHR91], which established the
foundations of DC. Then, more advanced studies followegting such topics as completeness or decidability
(see e.g. [HZ97]), then extensions to DC, like DC with infniime intervals [ZWR95], or higher-order DC
[ZGN99], for instance (see e.g. [DCh]).

There are also examples of the use of DC ([Nai99]) througlié&sign of real-time software, as well as proof
assistants for DC ([Hei8a,Hei99]). Nowadays, the mosvadtistitution in this field is the 11S. Its site [DCa]
gathers many links in relationship with DC.

2.2 Classical modelling of real-time problems

[SHO1] presents an example of the study of the watertanK@nobT his case study interests us because it describes
well the required steps in any other study of a real-time jgmolwith DC. These steps are :

Problem variables are defined

Specifications of the problem are translated into a DC foamsé callReq

Design decisions are taken and also translated into a DQuiarwe callDes such thaDes=- Req

Design takes place in a dense-time context, thus one maytoesake it discreet. In that case, a formGlant
must be found, such that - Cont=- Des 4 being a formula stating the behaviour of the environment and
the relations between discrete and dense variables.

— Finally, a program verifying the discrete constraint€ointis written.

Notice that here, the programming step is the last one, anthttyuage used in [SHO1] is simple.

Therefore, our idea is to exploit the fact that, in Bienethod, the programming step is strongly connected to
the proof step through refinement, so that we obtain a sirogliéin of all these steps. Here follows a quick survey
of DC with examples.

2.3 Syntax

Let X; be apropositional temporal lette¢interpreted as a boolean function over time intervasy, state variable
(interpreted as a boolean-valued function over tinxey,... global variables (interpreted as real numbefg),
functions andR; relation symbols. Usually, the functions are the standédtdraetic ones+, ) and the relations
are also the usual ones (<). The syntax of DC formulas is :

formula ::= Atom |- formula | formulav formula | formula formula |3x.formula
Atom ::=true | X | R(term,. .., term)
term ::=x| /| [state | f(term,..., term)
state ::= 0| 1 P | statev state |- state

Let us mention the fact as functions and relations might liechwith prefix or infix notation, as syntax is not
our main concern.

¢ represents the length of the current time interval, and népen its position in a formula w.r.t. trehop
connector—, which chops a formula into two formulas representing thiedvaredicates on the first part of the
time interval and the second part, respectively.

The additions of DC to IL are represented by the duration @tper and the state expressions. These have
the expressive power of propositional logic, and the daratiperator allows the expression of properties on these
states and on logical relations between them.

A proviso is added for the state variables, which are ingggat as functions over time : for the functions to be
integrable, they need to bimitely variableover the considered time interval. For example, the folimyfunction
is not finitely variable over an interval of real numbers :

(1) = {O if t is irrational

1 otherwise
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2.4 DC examples
Some examples are inspired from [HZ97]:

1. Let the state variabléSasandFlamebe the expressions of the event “gas is produced” and “flarstséx
respectively. Then, this DC formula states that during the-pero time interval, each time gas is produced,
the flame must be present :

J(Gas= Flame =/¢A{>0

2. The formulal = 10~ ¢ = 5 states that the first part of the time interval is 10 timeailihg, and the second
part is 5 time units long.

3. true™ (@ true) states that the formula is valid in some sub-interval. This special constian is also noted
<@, and is comparable with the one can find in other temporal logics.

4. Similarly, the formula~<(—@) is notedde, and is interpreted as : “for any time sub-interval, gifermula is
valid”.

2.5 Proof system

We will only underline in this section some hard points of fiieof system of [HZ97], on which are based some
of the implementations described in section 2.7. Now, fonsdefinitions beforehand:

Definition 1. A DC formulais calledigid if it does not contain any state variable, propositionaéledr?/ symbol.
It is otherwise calledlexible

Definition 2. A DC formula is callecchop freeif the — does not occur in the formula

Definition 3. The termB is free for x in@if x does not occur freely ipwithin the scope of the quantified variable
Yy, y occurring in@

This last definition is used later in a side-condition to @&s$drthe problem of variable instantiation. The axioms
of the proof system are distributed between those comirng ftg and those coming from DC. For example:

Example 1.Some IL axioms:

£>0 The length of a time interval can not be negative
oY = oif @isrigid If a rigid formula is valid on a part of an interval, it|is
also valid on the whole interval, as it is not influenced by
temporal variables or symbols

Example 2.Some DC axioms:

J1=¢ The “always true” state lasts the whole time interval
/S =[S if S < S holds inEquivalent states have the same duration
propositional logic

Some inference rules are added, and those inherited frodicate calculus are modified.
Two noticeable things about the proof system is that:

1. Side-conditions might require non-trivial analysistod involved formulas
2. Inference rules do not hold hypotheses, as in sequentlaaldor example. Thus some of them will not be
valid if coded “as is” in a prover (these problems have alydaekbn solved in the particular case of [Hei99]).

For example:

Example 3.Some DC inference rules (inherited from IL inference rules)

VX.@(X) e : either® is rigid
—(p(e) if Bis free forxin @(x) and{ or g(x) is chop free
=y

(9~ @)= (W~ )



2.6 DC with iteration

Many extensions to DC have been proposed to deal with thettiattformulas are only considered over the
current interval (see 2.1). One of them is DC with iterafiomhich allows to reason on an arbitrary number of
time subintervals. The next section is a more detailed ptatien of DC'.

An addition to DC Some additions to the proof system of DC are done :

— Alogical connectof, which chops an interval an arbitrary (possibly zero) nunaf¢imes.
— Three axioms:

DC; {=0= ¢'
DC; (¢ ¢) = @'
DC; (¢" Ay~ true) =

(WAL=0"true) V ((¢* A=W @) AY)"true

The two first axioms describe the properties of the iteratimmector, as could be expected from a repetition
operator. ThdC; axiom is needed to make deductions like> Y - ¢* = Y. Informally, this axioms helps
the characterising of the possible cases for an intervahiictwa formulap holds in its prefix and for a finite
number of sub-intervals the formuggholds.

oF =9 (¢)

P=¢=0

— Some additional notations(pk =g .. ~ofork>0

. k times
— An inference rule :

w: if Yk < o, H(([[S]] V [[-ST)¥) thenH (true)

DC* is preferred over DC when hybridising with a programmingglaage, due to the iteration connector,
which allows a more accurate representation of the looks {tiewhile control structure).

Decidable subsetin [GH99], a subset of DChas been proven decidable :

pu=(=0|[[S|[a<l[f<al(eV@) | (9 D) | (¢ @) | ¢

The formulas of this subset are callsidhple We will denote this subset SDCThis subset is interesting, as
the decision procedure is easy to write (an example can el [GH99] for a subclass of the simple formulas).
Therefore, when describing a temporal semantic for a progriag language, it is important to stay as close as
possible to such decidable subsets, in order to avoid prehdéed provability.

2.7 Proof support

The interested reader can find some of the tools presentecahfibCa]. There are many tools based on model-
checking methods to prove validity of DC formulas ([Pan®ikuch a tool), but we focus in this section on
proof assistants (whether they be automatic or not), bectneB method relies on a theorem prover. Then, any
extension td should be done with having in mind the availability of thigemnsion in the chosen theorem prover.
Moreover, some proofs happen to be hard enough not to be gpeatematically, then requiring user interaction
with the prover.

There are two ways to include DC support in a general-purposef assistant : with a shallow-embedding
implementation (adding the missing axioms to the theoremagm) or a deep-embedding implementation (all rules
of DC are rewritten). Let us present some of them :

PC/DC Based on PV&, this library used deep-embedding for its implementatihile proving the soundness
of DC rules is made easier, doing proofs "the syntactical'wagy be difficult. See [Hei8a] for more details.

9 Noted DC* from now on
10 prototype Verification System.



Isabelle/DC The method used here is shallow-embed&in@his systems allows easy proofs of DC, but the
drawback appears at the conception step : Isabelle/HOL ista-angine, thus all calculi DC depend on have
to be written again. See [Hei99] for a more in-depth view & design and use of this system.

Coq We have also developed libraries for Coq (presented in [CBJMThese libraries illustrate both shallow-
embedding and deep-embedding approaches. While the fismsed to actually make proofs, the latter can
be used to manipulate and reason about the formalism .

3 B method

We will suppose the reader is familiar with the B method onfat methods of the same kind, (for instance).
We will simply recall its greatest characteristics here.

The B method is based on the following formalisms : predicaleulus with set theory, generalised substi-
tutions, and refinement. The B machines are made up of clailgesiost important ones being tiéVARIANT
and theOPERATIONSThe soundness of a B machine is checked with logical formufaledproof obligations
built with theINVARIANTand either an operation or the initialisation clause of tlaeine.

We are particularly interested in this building rules, asythre based on Hoare’s triples and weakest precon-
dition calculus : Letpre and postbe logical formulas, an a substitution, thek pre}[S{ post} is a valid triple
if pre establishes the weakest preconditiorsaef.r.t. post This weakest precondition, noted in[8 post is cal-
culated with the rules in figure 1 (GSL is an abbreviation fperieralised substitutions language”). Then, we can
prove the{ pre}[S]{ post} is valid by proving the logical formulare =- [S/post

In the B method, the postcondition is simply replaced by the machivARIANT Similarly, the refinement
of an operation is proved to be correct if, when called withifpossibly) weaker precondition, it establishes the
same result as its abstraction. The reader can refer to fAs® more details.

| GSL  [[GsUP |description
skip P "Do nothing" substitution
x:=E PIE/X] All the occurrences of are replaced bi
gS gA[gP Precondition
g=—S |g=[9P Guard
ST S([T]P) Sequence
ST SPA[T]P Bounded choice
@x.S vX[§P Unbounded choice
ST simplified with rewriting rules Non-deterministic substitution
WHILEC [vx(IAP=[3])
DOS vx(I =V eN)
VARIANT V |¥X(I AP = [n:=V][§(V < n))
INVARIANT 1|¥x(1 A—=P = R)

Fig. 1. Calculus of the weakest precondition

3.1 Temporally constrained problems with "classical" B

The use of the set theory allows the developer to adapt thef poaits framework. Therefore it is possible to
express models with temporal needs. In [Lan98], a commtiaitarotocol between a SmartCard and its reader
is modelled in B. A component with temporal constraints swalescribed in [TS99]. Unfortunately, there are still
some limitations :

— In [Lan98], temporal constraints do not include hard terapoeeds, i.e. quantified time intervals, but rather
constraints on the order of the steps of the protocol.

11 actually, due to the particularity of Isabelle/HOL, whicmata-engine, this embedding is also denoteebsrnal



— In [TS99], the model calls a clocks it updates itself, andsdnet allow the “triggering” of the different
operations, although it allows to check the operationstioncorrectly if triggered during specific time inter-
vals. Moreover, with this approach, proof obligations cardme complex, even more if they are composed
together so they communicate, but function according teiht clocks.

Hence, even if it is possible to model temporally constrdipmblems in "classical" B, the complexity of proof
obligations potentially generated, as well as the externmmalelling of time (the problem is not subject to time, but
handles it through a machine acting as a clock), limit thesta problems that can be addressed.

3.2 Event B and temporal constraints

Event B (see e.g. [Abr00]) is an extension of B allowing abstractc#fjmation of reactive systems. Thus, it is
easier to model protocols requiring concurrency, or systéescribed by events that can happenin it.

In [HIMOO03], timed automatas are used in conjunction vegant B to model timed event systems. The
presented example is a railroad crossing, in which the tamtake several states (modelled by a set), and to
each event is associated a transition having the train go émte state to the next. We have here a correspondence
between the events’ system of tBemachine and a timed automata representing the differetatsstiae system
can be in, as well as associated transitions. This appractwo advantages :

— Many clocks can be defined for one or several problems, wHiotvsithe expression of numerous temporal
properties of the model

— The refinement of timed automata is intuitive, and gives tltato check that many properties of the model
are kept at the refinement step.

There are also subtle points one has to take care of :

— The events can not be triggered explicitly. One can only actariables of the model, ensuring during the
proof that the guard of the awaited event is triggered. Thepisevent B away from an immediate implemen-
tation1?

— The more clocks there are in the model, the more constraintk@m may appear in events’ guards, hence
the harder the proof obligations can be. Besides, hererieif still not considered as implicit, but appears
in the form of clocks.

4 Temporal extension for "classical" B

The extension presented here is based on [SHO1], in whicprésented method rather follows the design steps
presented in section 2.2. So, instead of having logicaliBpations as a basis to validate a solution to a temporally
constrained problem, we use the substitutionB tf describe the dynamical behaviour by giving them a tenipora
semantic, so as to extract temporal informations we aredsted in validating.

We define this semantic under the usBalesign hypotheses, that is to say that there is no concwyyramt the
substitutions terminate. Moreover, we suppose the truetspmy hypothesis, stating that affectations take zero
time. This hypothesis is made because, in practice, thgslelsed to synchronise the different components of a
model are very big w.r.t. the execution time of little ingttions (affectations, additions,etc), hence the latter do
not play a big role in the core of the modelled problem. Let asce though, that the possibility remains to add
delay statements if one needs to take into account the dar@ven little) of particular substitutions.

4.1 Temporal semantic of substitutions

We present in figure 2 a possible semantic for B substitutidhe formuladur([GSU,P) means "the duration of
the substitution GSL, knowing the postcondition P".
Let us first notice that the calculus of a duration formulagsaself on a predicate : this predicate represents
the state whose evolution we want to watch during the "exectof the substitution (more on this in section 4.2).
As an example, let us make the proof of the rule for\tfieile, as made in [SHO1] (for space reasons, we can
not recall the definitions of WDChere). The inference rule can be written as :

12 This is half a problem, though, @sent B has been designed for abstract modelisation, and therg/stienss allowing to
explicit the operational semantic of events ([BF03]).



[ GSL  [dur([GSL,P)

skip__ |1
x:=E 1Nl
delayd |(¢(=d)A[P]
g|S dur([],P)
g=S |dur([9,P)
ST dur([S, ([T]P)) " dur([T],P)
ST dur([g,P) vdur([T],P)
@x.S dur([3],P)
ST transformed through rewriting rules
WHILE C
DO S dur([g,1)*
VARIANT V
INVARIANT 1

Fig. 2. Calculus of a duration formula from a generalised subgbitut

{[S1s.dur((8,)]{I} 1AC=[JI IA-C=P
WHILE C
{11 |pos dur([S,1D)*| {P}
INVARIANT |

Please note that we forgot the side-conditions foMARIANT as it is not used in the proof.
We keep the definition of real-time rules for tvaile : Miin(WHILE) = ([C]%™ M5in (S)~ SCH)*~ [-C1°
Now let us prove thafl 1%~ Min (WHILE) =wpc: Msin(WHILE) ™ [P]°

1. Assumption {[SI}[S dur([F,1)]{I}
2. Assumption 1 AC =[S

3. Assumption I A—-C=P
4. By 1, |_[S]|—|0AMfin(S) =WDC Mfin(S)f\ ]—|—|0

5.
117°~ Min (WHILE)
= [1797(]C1% M;in(S)~SCH)*~ [-C]° (definition forwhile)
= [I A=C]°V ([1 AC]®™ Miin(S)~SCH)+~[-C]° (WDC¥)
= [IA=C1OV ([[S1°~ Mjin(S) " SCH)* ~[-C]° (2)
= [IA=CI°V (Miin(S) HOASCH)JM( C]° (4)
= [1A=CIOV (Msin(S)"SCH[11°)*[-C]°  (conservation of variables’ sta@ONDY)
= [I A=C]°V (Msin(S)"SCH) ™[I A—C]° (WDC")
= (Miin(S)~SCH)*~[I A—C]° (WDC)
— ([C]°" Miin(S)~SCH)*~[I A—C]° (WDC")
= ([C]° M5in(S)~SCH)*~ [-C]°~[I A=C]° (WDC")
= Miin(WHILE) " [I A—C]° (definition ofwhile)
= Miin(WHILE) ™ [P]° (3,WDC")

Then, we prove the duration formula (the proof is similarite one in [SHO1]) :

1. Assumption {[S }[S,dur([S],1)]{I}
2. By 1, [([[S11°" Miin(S)) = dur([S],1)
3.

M(M1°" Miin(WHILE))

= MM A=C1®) v ([IS17°% Miin(S)~SCH) ™)~ ([-C1°) (definition ofwhile and monotony of )
= L=0V(dur([§,]) " ¢=0""¢=0 (2.,definition of )
= (=0vdur([g,)* (DC*)
= dur([9,1)* (DC*)



O

Thus we have proved that the rules for thiile are correct w.r.t. its definition in WDC The proofs for other
substitutions are similar : for instance, the proofs forlibended and unbounded choice happen to be compatible
with the definition of the rules for thié then elsestructure of [SHO1]. That is the least one could have expecte
from two formalisms originally based on Hoare’s triple.

Examples The following examples are not meant to reflect actual temlpoeconstrained problems, but rather to
give the reader an intuition of the mechanism of the germratf duration formulas from the operations.

S=
BEGIN
delay 3;
IF
x>0
THEN
delay 1; skip;
ELSE
delay 2; x:=-x;
END;
END

Fig. 3. Example 1

Example 1 The duration formula associated with the substitution inrég3, knowing that, after execution, we
havex> 0, is:

dur([§,x > 0) = dur([delayd], [IF...](x > 0) " dur([IF...],x > 0)

__dur([delay3],(x>0=x>0)A(—x>0= —x>0)

© Tdur([x > 0= delayl;skip,x > 0) Vdur([-x > 0 = delay2;x:= —X],x > 0)
_L=3A[[Xx>0=x>0)A(—Xx>0=—x> 0]

T T =1A[x=0])V(=2A[-x>0])

={L=3A[[true]| " (({=1A[[x=>0])V({=2A]—x>0]])

S=
BEGIN
delayl;
ANY
y
WHERE
ye{a|dbb>0ra=2xb}
THEN
X:=y
END;
END

Fig. 4. Example 2

Example 2The duration formula associated with the substitution inégd, knowing that after execution we have
x>0,is:



dur([§,x>0) =¢=1A[Vy,ye {ajFb,b>0Aa=2xb} =y > 0]
= {= 1A [[true]]

4.2 Use in abstract machines
Temporal correctness of operationsLet us start this section with two remarks :

— Verifying the consistency of the machine invariant with tfenerated temporal formulas is irrelevant : the
invariant helps ensure the variable of the machines ard baliween each operation execution, namely at a
particular point in time. In DC, statements made at a poininme can be reduced to the axiof@d = 0, thus
they are not useful for the proof of temporal formulas

— Different operations inside a machine, generally spealirage different behaviours : the invariant can be
seen as the common subset of what all these operationsigistatiiat is why we need to give the developer
a way of expressing more precise requirements for each tperd hese requirements will be predicates
we can base the duration formulas’ generation on. This rengdates to those made in [TS99, section 6.4],
where to each operation corresponds a timed operation, ichwbmporal constraints are expressed in the
precondition.

Then, all we have to do is associate to each substitutioreafythtem a temporal constraint it must establish. To this
end, we propose to add a new substitution we name TIMING, ehalg is to state the temporal constraint of the
substitution it guards. Finally, we have to provide the jatk whose evolution we will watch in the substitution
(theP of figure 2). Then, we have two possibilities :

— Use theINVARIANT of the machine : assuming that the usual B proof obligatiamsetshowed that the
invariant is established, it is an informative represaotabf the state of the variables of the system. The
drawback is that not all the predicates composing the iamarnight be useful, and may make the resulting
duration formula unwieldy. Likewise, predicates corrasgiag to typing of variables will not be much useful,
as a type-checking step should have been realized at the time

— Another solution is to use a predicate representing whabpleeation will have realized, while staying con-
sistent with the invariant of the machine and not contaimirelevant predicates : this solution is presented in
[Pet03, section 4.3.3], in the form of postconditions. Postitions possess all the characteristics mentioned
above : they contain only predicates relevant for the aasettioperation, and they are informative enough to
represent the result of the operation.

TIMING
Substitution
POST
Postcondition (in the form of a predicate)
REQUIRES
Temporal constraint
END

Fig. 5. Form of a substitution with a temporal constraint

Thus a substitution with a temporal constraint will have sh@pe indicated in figure 5. Then, in order to
prove the temporal correctness of the substitution, iteesdfto generate the corresponding trace with the provided
postcondition, and check the constraint is verified, thus :

dur([Substitutioh, Postconditiop = Temporal constraint

Example 1The generated formula for the example of figure 6 on the ld& & :¢/ = 1A [[x— 1> 0]] = O([[x>
0]]), which is easy to prove. Note also that the postconditiontisitively verified.



ExampleZ =
TIMING
x:=100;
x «—Examplel = !
TIMING W'j(lili
PRE DO
TH)I(Eﬁl x:=Examplel
ol A, INVARIANT
delay 1; x:=x-1; >0
. VARIANT
x>0 X
REQUIRES POE¥D
B([x=01) true
END REQUIRES
O([lx = 0f))
END

Fig. 6. An example of specification

Example 2In this example (figure 6, on the right side), two substitasigvith temporal constraints are nested. We
then have two possibilities :

— Prove the internal substitution, then forget the intermaitpondition and time constraint to prove the external
substitution

— Prove the internal substitution, and, instead of re-caloug) the part corresponding to the internal substitution,
use the time constraint it establishes.

The generated duration formulas i§3([[x > 0]]))* = O([[x > 0]]). Though we have not enough space to
develop the proof here, one can see the formula hold : in the te interval i€ = 0, then there is no non-zero
interval on which the statgx > 07 is false, and in the case the interval is non-zero, then topapties of thed
operator allow us to prove the consequence hold.

We have also replaced the calculus of ((l@xampld],x > 0) with the temporal specification established by
ExamplelIndeed, it allows us better precision than using the onkaiiiant, as the postcondition &xamplel
guarantees the invariant is respected (the proof is dorfeeaidual step of verification of the correctness of the
proof obligations).

Modularity Section 4.2 illustrates the way we can validate nested sutishs with temporal constraints. Now,
this is the way proof obligations for operations in "clas$i® are generated. We do not want, as stated in [Pet03,
4.3.3], to depend on the code of the called operations to &egftware componemntiew of B machines. To this
end, we need :

— Code independence towards the operations called in thededl machines, i.e. the called operation must
satisfy a contract with the help of which we will be able toidate the current operation, without knowing
the code of the called operation.

— Limited scope of the variables, i.e. an operation need npbexa contract containing variables from an
included machine.

The first constraint is achieved, when generating the camdtirmula, by using the duration formula of the
called operation in the same manner as the nested sulmsigudf section 4.2.

Itis up to the developer to achieve the second constraithte &the one who determines what each operation
must guarantee. Then, the verification of duration formsilddne as in section 4.2.

Refinement Refinement iB allows us the checking of that the result of an operation tsnansistent with the
one of the operation it refines. Thanks to this, we can knowwttat is calculated by the operation keeps certain
properties. It allows also the use of new variables, moreia ones (in the programming sense), to realise these
calculi. The verification is then made by expressing theimdetween the new variables and those of the refined
machine through a so-calleguing invariant.
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However, temporal verification is about they the operation unfolds, which may cause problems : thus, a
refined operation can have a more precise temporal tracés bat allowed to redefine its working steps. So, we

have several cases :

REFINEMENT
MACHINE LittleExamplel
LittleExample REFINES
VARIABLES LittleExample
y VARIABLES
INVARIANT z
y € IF(NAT1) INVARIANT
INITIALISATION z = max(yU{0})
y =g INITIALISATION
OPERATIONS z:=0
lire(n) = OPERATIONS
PRE lire(n) =
n e NAT1 PRE
THEN n e NAT1
y =y ufn} THEN
END; z :=max(z,n)
m «—maximum = END:
PRE m «—maximum =
y #2 PRE
THEN 2 40
m :=max(y) THEN
END m :=z
END

Fig. 7. Machine LittleExample and its refinement

Direct demonstrationlf @is the duration formula of the operation, agidhe duration formula of its refinement,
check@ = @. In that case :

— If new, more concrete, variables are introduced, replatimge from the refined machine, the formula is
generally not provable. For instance, in figure 7, the véeialb the machine, a set, is refined by an integer
variable. This means that, although the new variable cpomds functionally to the refined one (proved by
theB proof obligations), the way they are are calculated is diffie, and then the different states the variable
can have during the calculus can differ in the abstracti@hiathe refinement

— The temporal trace must also be strongly similar to the ondefbstraction. For instance, in figure 8, the
operationoper2 can not refin@perl, because the formula to prove wouldbe 5= ¢ = 0, which is false.

This way of designing would force us to have a great tempasdipion at the beginning of the modelisation,
and that is not what we wish for the designer.

The contract approachThe contract approach is another approach to ensure thfihament will not contradict
the operations that might use it : the new operation alsdgulie temporal constraints of the operation it refines.
This corresponds to avperation refinemerapproach.

In the example figure 8, we achieve this by removing the tealpaynstraints fromoper2, calculating its
temporal trace with the postcondition operl, and checking this trace validates the temporal conssraih
operl. We have chosen to adopt this more flexible approach, faethporal validation of a refinement. We have
just proposed a formal description of postconditions amit ttefinement in [CMPO04]. Then, the only remaining

problem would be the addition of new variables refining thesofitom the abstract machine (which corresponds
to data refinement

11



operl = oper2 =
TIMING TIMING
skip delay 5;
POST POST
X=X X=X
REQUIRES REQUIRES
£<10 £<10
END END

Fig. 8. Example of temporally different refinements

5 Conclusion

After having presented DC and one of its extension suitadriéhie verification of real-time programs, as well as
some of its properties, we have reminded the reader of thedftions of th& method, and some of the way used
to express temporal problems with it. We have seen that v$siple to use :

— Either the bare formalism, but then we have to face diffieslth the designing and the proof steps
— Orevent B completed with known methods, coming from the real-time gamity, but in that case we have
to face a lack of tools.

Hence we have showed that another way is possible : extettdngost used formalism with a temporal logic.
This allowed us to define a temporal semantic for B substitigtivithout modifying the foundations of the seman-
tic, based on set theory. In fact, the opposite effect waeaet : DC, being defined partly on top of the predicate
calculus, allowed us to use the substitutions to find theiperal trace with regard to a postcondition that we
know to be correct (the correctness proof was made duringlfissicaB design stage).

Moreover, the temporal validation step of the operatiomssifies the need for the modular validation of B
machines, by requiring the use of postconditions, and bygusie same mechanism as in the call of operations of
included machines.

6 Perspectives

Now that we are able to specify and verify a problem with terapoonstraints iB under the usual hypotheses (no
concurrency, termination), what is left is to remove thegedtheses in order to benefit from the expressiveness of
DC, in order to check, for instance, the railroad crossirapfem (see [CBR93] for a general description). With
this aim in view, we can express problems with more subtlepteal requirements (for example replacing the
temporal logic used in [LFD96] by DC), with an easier treatitnaf non-terminating (for instance, the validation
of a mutual exclusion protocol, as in [SHO1]).

It can also be interesting to use DC as a way of expressing aithting fairness and liveness constraints in
event B, by expressing time quantifications more naturally (i.¢haut using clocks or machines manipulating
time).

Another interest of DC is the ability to express timed auttasdsee [JHOQ]), and vice versa, provided cer-
tain constraints are respected : it then allows the use @rakmethods at the same time to model a temporal
problem, i.e. a timed automata to specify the temporal bebawof the model, and use tl2method to build the
implementation step by step, with the help of refinement.

In the end B is also used to validate UML models (see [ML02]). A temporegkesion to B will allow the
checking of OCL models with temporal constraints, thosefénherited from the corresponding UML model,
since UML 2.0 will include notions of time.
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