
Duration calculus :
A real-time semantic for B

Samuel COLIN1,2, Georges MARIANO1, Vincent POIRRIEZ2

1 INRETS⋆, 20, rue Elisée RECLUS, BP 317 F-59666 Villeneuve d’Ascq Cedex, France
2 LAMIH ⋆⋆, UMR CNRS 5830, Le Mont Houy, 59313 Valenciennes Cedex 9, France

Abstract. Among the possible approaches for expressing real-time problems with theB method, two are
dominant : the use of the usualB mechanisms to define temporal constraints on the one hand, and extendingB
through another formalism more adapted to the real-time context on the other hand.
We define here a possible temporal semantic forB, by using a temporal logic (the duration calculus), and we
illustrate how this extension affects the proof mechanism used to show the soundness of abstract machines.

1 Introduction

For several years, feedback on the use of formal methods in the industrial field has been, in majority, positive.
Indeed, for instance, theB method showed its strength in helping the conception of safety-critical systems (for
instance, the famous example of line number 14 of the Parisian subway [BBFM99]).

However, the possibilities offered by the formal methods have to evolve at the same time as industrial needs do.
Viable methods for the validation of non-functional constraints appear gradually : among them are the temporally-
constrained problems. Indeed, the field of embedded devicesand embedded software has great need of methods
allowing the designing of solutions including time management, and also, in the case of critical systems, the
checking of thevalidity of these solutions.

Such methods already exist, but often show drawbacks that can make the study of some cases difficult :

– Model-checking methods are suitable for the validation of little problems, but when composing those prob-
lems to have them interact, the number of cases increase dramatically. There are methods to avoid this prob-
lem partially, but they involve often abstract interpretation, which is actually a way of giving semantics to
languages.

– Methods using temporal automatas have good compositionality properties, but do not allow the description of
the step from the abstract modelisation to computer code.

Then the idea of merging these design methods with formal languages and/or methods ensues, so one can
benefit from both sides :

– Easy validation of temporal constraints from the temporal formalism part
– Properties of modularity, compositionality and proximitywith computer code from the language part.

In the next sections, we present a method to obtain a formal tool, allowing the checking of both functional
and temporal properties of a given problem, by defining a temporal semantic for theB method. We first describe
the formalism used to express this semantic, the duration calculus3 then we remind the reader of the properties of
theB method. Later on, we describe more in detail a temporal semantic for B, and end up with the possibilities
brought by this approach.

2 Duration calculus

From the site ([DCa]) : "The duration calculus is a modal logic for describing and reasoning about the real-time
behaviour of dynamic systems, where states change over timeand are represented by functions from time (reals)
to the Boolean values (0 and 1). It is an extension of IntervalTemporal Logic4 [Dut95], but with continuous time,
and uses integrated durations of states as interval temporal variables. Assuming finite variability of state functions,
the axioms and rules of the DC constitute a complete logic (relative to Interval Temporal Logic)."

⋆ Institut National de REcherche sur les Transports et leur Sécurité
⋆⋆ Laboratoire d’Automatique, de Mécanique, et d’Informatique industrielles et Humaines
3 abbreviated as DC from now on.
4 abbreviated IL from now on

2.1 History

Research on a temporal logic more powerful than "classical"interval temporal logic (see [Dut95]) was initiated
by the ProCos5 project of the ESPRIT6 program, in the BRA7 3104 and 7071 working groups.

This initiative led in 1990 to the paper entitled "A calculusof durations" [ZHR91], which established the
foundations of DC. Then, more advanced studies followed, treating such topics as completeness or decidability
(see e.g. [HZ97]), then extensions to DC, like DC with infinite time intervals [ZWR95], or higher-order DC
[ZGN99], for instance (see e.g. [DCb]).

There are also examples of the use of DC ([Nai99]) through thedesign of real-time software, as well as proof
assistants for DC ([Hei8a,Hei99]). Nowadays, the most active institution in this field is the IIST8. Its site [DCa]
gathers many links in relationship with DC.

2.2 Classical modelling of real-time problems

[SH01] presents an example of the study of the watertank problem. This case study interests us because it describes
well the required steps in any other study of a real-time problem with DC. These steps are :

– Problem variables are defined
– Specifications of the problem are translated into a DC formula we callReq
– Design decisions are taken and also translated into a DC formula we callDes, such thatDes⇒ Req
– Design takes place in a dense-time context, thus one may needto make it discreet. In that case, a formulaCont

must be found, such thatA ⊢Cont⇒ Des, A being a formula stating the behaviour of the environment and
the relations between discrete and dense variables.

– Finally, a program verifying the discrete constraints ofCont is written.

Notice that here, the programming step is the last one, and the language used in [SH01] is simple.
Therefore, our idea is to exploit the fact that, in theB method, the programming step is strongly connected to

the proof step through refinement, so that we obtain a simplification of all these steps. Here follows a quick survey
of DC with examples.

2.3 Syntax

Let Xi be apropositional temporal letter(interpreted as a boolean function over time intervals),Pi a state variable
(interpreted as a boolean-valued function over time),x,y, . . . global variables (interpreted as real numbers),fi
functions andRi relation symbols. Usually, the functions are the standard arithmetic ones (+,∗) and the relations
are also the usual ones (=,≤). The syntax of DC formulas is :

formula ::= Atom |¬ formula | formula∨ formula | formula⌢formula |∃x.formula
Atom ::= true | X | R(term,. . . , term)
term ::=x | ℓ |

R

state | f(term,. . . , term)
state ::= 0 | 1 |P | state∨ state |¬ state

Let us mention the fact as functions and relations might be noted with prefix or infix notation, as syntax is not
our main concern.

ℓ represents the length of the current time interval, and depends on its position in a formula w.r.t. thechop
connector⌢, which chops a formula into two formulas representing the valid predicates on the first part of the
time interval and the second part, respectively.

The additions of DC to IL are represented by the duration operator
R

and the state expressions. These have
the expressive power of propositional logic, and the duration operator allows the expression of properties on these
states and on logical relations between them.

A proviso is added for the state variables, which are interpreted as functions over time : for the functions to be
integrable, they need to befinitely variableover the considered time interval. For example, the following function
is not finitely variable over an interval of real numbers :

f (t) =

{
0 if t is irrational
1 otherwise

5 Provably correct systems.
6 European Strategic Program for Research in Information Technology.
7 Basic Research Action.
8 International Institute for Software Technology, affiliated with the United Nations University.

2

2.4 DC examples

Some examples are inspired from [HZ97]:

1. Let the state variablesGasandFlamebe the expressions of the event “gas is produced” and “flame exists”,
respectively. Then, this DC formula states that during the non-zero time interval, each time gas is produced,
the flame must be present :

R

(Gas⇒ Flame) = ℓ∧ ℓ > 0

2. The formulaℓ = 10⌢ℓ = 5 states that the first part of the time interval is 10 time units long, and the second
part is 5 time units long.

3. true⌢(φ⌢true) states that theφ formula is valid in some sub-interval. This special construction is also noted
3φ, and is comparable with the3 one can find in other temporal logics.

4. Similarly, the formula¬3(¬φ) is noted2φ, and is interpreted as : “for any time sub-interval, theφ formula is
valid”.

2.5 Proof system

We will only underline in this section some hard points of theproof system of [HZ97], on which are based some
of the implementations described in section 2.7. Now, for some definitions beforehand:

Definition 1. A DC formula is calledrigid if it does not contain any state variable, propositional letter orℓ symbol.
It is otherwise calledflexible

Definition 2. A DC formula is calledchop freeif the ⌢ does not occur in the formula

Definition 3. The termθ is free for x inφ if x does not occur freely inφ within the scope of the quantified variable
y, y occurring inθ

This last definition is used later in a side-condition to address the problem of variable instantiation. The axioms
of the proof system are distributed between those coming from IL, and those coming from DC. For example:

Example 1.Some IL axioms:

ℓ≥ 0 The length of a time interval can not be negative
φ⌢ψ⇒ φ if φ is rigid If a rigid formula is valid on a part of an interval, it is

also valid on the whole interval, as it is not influenced by
temporal variables or symbols

Example 2.Some DC axioms:
R

1 = ℓ The “always true” state lasts the whole time interval
R

S1 =
R

S2 if S1 ⇔ S2 holds in
propositional logic

Equivalent states have the same duration

Some inference rules are added, and those inherited from predicate calculus are modified.
Two noticeable things about the proof system is that:

1. Side-conditions might require non-trivial analysis of the involved formulas
2. Inference rules do not hold hypotheses, as in sequent calculus, for example. Thus some of them will not be

valid if coded “as is” in a prover (these problems have already been solved in the particular case of [Hei99]).

For example:

Example 3.Some DC inference rules (inherited from IL inference rules):

∀x.φ(x)
φ(θ) if θ is free forx in φ(x) and

{
eitherθ is rigid
or φ(x) is chop free

φ⇒ψ
(φ⌢Φ)⇒(ψ⌢Φ)

3

2.6 DC with iteration

Many extensions to DC have been proposed to deal with the factthat formulas are only considered over the
current interval (see 2.1). One of them is DC with iteration9, which allows to reason on an arbitrary number of
time subintervals. The next section is a more detailed presentation of DC∗.

An addition to DC Some additions to the proof system of DC are done :

– A logical connector∗, which chops an interval an arbitrary (possibly zero) number of times.
– Three axioms:

DC∗1 ℓ = 0⇒ φ∗
DC∗2 (φ∗⌢φ)⇒ φ∗
DC∗3 (φ∗∧ψ⌢true)⇒

(ψ∧ ℓ = 0⌢true)∨ ((φ∗∧¬ψ⌢φ)∧ψ)⌢true

The two first axioms describe the properties of the iterationconnector, as could be expected from a repetition
operator. TheDC∗3 axiom is needed to make deductions likeφ⇒ ψ ⊢ φ∗⇒ ψ∗. Informally, this axioms helps
the characterising of the possible cases for an interval in which a formulaψ holds in its prefix and for a finite
number of sub-intervals the formulaφ holds.

– Some additional notations :

φ+ =̂ φ⌢(φ∗)
φ0 =̂ ℓ = 0
φk =̂ φ⌢ . . .⌢φ︸ ︷︷ ︸

k times

for k > 0

– An inference rule :

ω: if ∀k < ω,H((⌈⌈S⌉⌉∨⌈⌈¬S⌉⌉)k) thenH(true)

DC∗ is preferred over DC when hybridising with a programming language, due to the iteration connector,
which allows a more accurate representation of the loops (like thewhilecontrol structure).

Decidable subsetIn [GH99], a subset of DC∗ has been proven decidable :

φ ::= ℓ = 0 | ⌈⌈S⌉⌉ | a≤ ℓ | ℓ≤ a | (φ∨φ) | (φ∧φ) | (φ⌢φ) | φ∗

The formulas of this subset are calledsimple. We will denote this subset SDC∗. This subset is interesting, as
the decision procedure is easy to write (an example can be found in [GH99] for a subclass of the simple formulas).
Therefore, when describing a temporal semantic for a programming language, it is important to stay as close as
possible to such decidable subsets, in order to avoid problems of provability.

2.7 Proof support

The interested reader can find some of the tools presented here at [DCa]. There are many tools based on model-
checking methods to prove validity of DC formulas ([Pan01] is such a tool), but we focus in this section on
proof assistants (whether they be automatic or not), because theB method relies on a theorem prover. Then, any
extension toB should be done with having in mind the availability of this extension in the chosen theorem prover.
Moreover, some proofs happen to be hard enough not to be proved automatically, then requiring user interaction
with the prover.

There are two ways to include DC support in a general-purposeproof assistant : with a shallow-embedding
implementation (adding the missing axioms to the theorem prover) or a deep-embedding implementation (all rules
of DC are rewritten). Let us present some of them :

PC/DC Based on PVS10, this library used deep-embedding for its implementation.While proving the soundness
of DC rules is made easier, doing proofs "the syntactical way" may be difficult.See [Hei8a] for more details.

9 Noted DC∗ from now on
10 Prototype Verification System.

4

Isabelle/DC The method used here is shallow-embedding11. This systems allows easy proofs of DC, but the
drawback appears at the conception step : Isabelle/HOL is a meta-engine, thus all calculi DC depend on have
to be written again. See [Hei99] for a more in-depth view of the design and use of this system.

Coq We have also developed libraries for Coq (presented in [CPM03]). These libraries illustrate both shallow-
embedding and deep-embedding approaches. While the formeris used to actually make proofs, the latter can
be used to manipulate and reason about the formalism .

3 B method

We will suppose the reader is familiar with the B method or formal methods of the same kind (Z, for instance).
We will simply recall its greatest characteristics here.

The B method is based on the following formalisms : predicatecalculus with set theory, generalised substi-
tutions, and refinement. The B machines are made up of clauses, the most important ones being theINVARIANT
and theOPERATIONS. The soundness of a B machine is checked with logical formulas, calledproof obligations,
built with theINVARIANTand either an operation or the initialisation clause of the machine.

We are particularly interested in this building rules, as they are based on Hoare’s triples and weakest precon-
dition calculus : Letpre andpostbe logical formulas, andSa substitution, then{pre}[S]{post} is a valid triple
if pre establishes the weakest precondition ofSw.r.t. post. This weakest precondition, noted in B[S]post, is cal-
culated with the rules in figure 1 (GSL is an abbreviation for "generalised substitutions language"). Then, we can
prove the{pre}[S]{post} is valid by proving the logical formulapre⇒ [S]post.

In theB method, the postcondition is simply replaced by the machineINVARIANT. Similarly, the refinement
of an operation is proved to be correct if, when called withina (possibly) weaker precondition, it establishes the
same result as its abstraction. The reader can refer to [Abr96] for more details.

GSL [GSL]P description

skip P "Do nothing" substitution
x := E P[E/x] All the occurrences ofx are replaced byE

g|S g∧ [S]P Precondition
g =⇒ S g⇒ [S]P Guard

S;T [S]([T]P) Sequence
S[]T [S]P∧ [T]P Bounded choice
@x.S ∀x[S]P Unbounded choice
S‖T simplified with rewriting rules Non-deterministic substitution

WHILE C ∀x(I ∧P⇒ [S]I)
DO S ∀x(I ⇒V ∈N)

VARIANT V ∀x(I ∧P⇒ [n := V][S](V < n))
INVARIANT I ∀x(I ∧¬P⇒ R)

Fig. 1. Calculus of the weakest precondition

3.1 Temporally constrained problems with "classical" B

The use of the set theory allows the developer to adapt the proof to its framework. Therefore it is possible to
express models with temporal needs. In [Lan98], a communication protocol between a SmartCard and its reader
is modelled in B. A component with temporal constraints is also described in [TS99]. Unfortunately, there are still
some limitations :

– In [Lan98], temporal constraints do not include hard temporal needs, i.e. quantified time intervals, but rather
constraints on the order of the steps of the protocol.

11 actually, due to the particularity of Isabelle/HOL, which ameta-engine, this embedding is also denoted asexternal.

5

– In [TS99], the model calls a clocks it updates itself, and does not allow the “triggering” of the different
operations, although it allows to check the operations function correctly if triggered during specific time inter-
vals. Moreover, with this approach, proof obligations can become complex, even more if they are composed
together so they communicate, but function according to different clocks.

Hence, even if it is possible to model temporally constrained problems in "classical" B, the complexity of proof
obligations potentially generated, as well as the externalmodelling of time (the problem is not subject to time, but
handles it through a machine acting as a clock), limit the class of problems that can be addressed.

3.2 Event B and temporal constraints

Event B (see e.g. [Abr00]) is an extension of B allowing abstract specification of reactive systems. Thus, it is
easier to model protocols requiring concurrency, or systems described by events that can happen in it.

In [HJMO03], timed automatas are used in conjunction withevent B to model timed event systems. The
presented example is a railroad crossing, in which the traincan take several states (modelled by a set), and to
each event is associated a transition having the train go from one state to the next. We have here a correspondence
between the events’ system of theB machine and a timed automata representing the different states the system
can be in, as well as associated transitions. This approach has two advantages :

– Many clocks can be defined for one or several problems, which allows the expression of numerous temporal
properties of the model

– The refinement of timed automata is intuitive, and gives the ability to check that many properties of the model
are kept at the refinement step.

There are also subtle points one has to take care of :

– The events can not be triggered explicitly. One can only act on variables of the model, ensuring during the
proof that the guard of the awaited event is triggered. This keepsevent B away from an immediate implemen-
tation.12

– The more clocks there are in the model, the more constraints on them may appear in events’ guards, hence
the harder the proof obligations can be. Besides, here the time is still not considered as implicit, but appears
in the form of clocks.

4 Temporal extension for "classical" B

The extension presented here is based on [SH01], in which thepresented method rather follows the design steps
presented in section 2.2. So, instead of having logical specifications as a basis to validate a solution to a temporally
constrained problem, we use the substitutions ofB to describe the dynamical behaviour by giving them a temporal
semantic, so as to extract temporal informations we are interested in validating.

We define this semantic under the usualB design hypotheses, that is to say that there is no concurrency, and the
substitutions terminate. Moreover, we suppose the true synchrony hypothesis, stating that affectations take zero
time. This hypothesis is made because, in practice, the delays used to synchronise the different components of a
model are very big w.r.t. the execution time of little instructions (affectations, additions,etc), hence the latter do
not play a big role in the core of the modelled problem. Let us notice though, that the possibility remains to add
delay statements if one needs to take into account the duration (even little) of particular substitutions.

4.1 Temporal semantic of substitutions

We present in figure 2 a possible semantic for B substitutions. The formuladur([GSL],P) means "the duration of
the substitution GSL, knowing the postcondition P".

Let us first notice that the calculus of a duration formula bases itself on a predicate : this predicate represents
the state whose evolution we want to watch during the "execution" of the substitution (more on this in section 4.2).

As an example, let us make the proof of the rule for theWhile, as made in [SH01] (for space reasons, we can
not recall the definitions of WDC∗ here). The inference rule can be written as :

12 This is half a problem, though, asevent B has been designed for abstract modelisation, and there are systems allowing to
explicit the operational semantic of events ([BF03]).

6

GSL dur([GSL],P)

skip ⌈⌈⌉⌉

x := E ⌈⌈⌉⌉

delayd (ℓ = d)∧⌈⌈P⌉⌉
g|S dur([S],P)

g =⇒ S dur([S],P)

S;T dur([S],([T]P))⌢dur([T],P)

S[]T dur([S],P)∨dur([T],P)

@x.S dur([S],P)

S‖T transformed through rewriting rules
WHILE C

DO S dur([S], I)∗

VARIANT V
INVARIANT I

Fig. 2. Calculus of a duration formula from a generalised substitution

{[S]I}[S,dur([S], I)]{I} I ∧C⇒ [S]I I ∧¬C⇒ P

{I}

WHILE C
DO S
INVARIANT I

,dur([S], I)∗

{P}

Please note that we forgot the side-conditions for theVARIANT, as it is not used in the proof.
We keep the definition of real-time rules for thewhile : M f in(WHILE)≡ (⌈C⌉0⌢M f in(S)⌢SCHi)

∗⌢⌈¬C⌉0

Now let us prove that⌈I⌉0⌢M f in(WHILE)⇒WDC∗ M f in(WHILE)⌢⌈P⌉0

1. Assumption :{[S]I}[S,dur([S], I)]{I}
2. Assumption :I ∧C⇒ [S]I
3. Assumption :I ∧¬C⇒ P
4. By 1, ⌈[S]I⌉0⌢M f in(S)⇒WDC∗ M f in(S)⌢⌈I⌉0

5.

⌈I⌉0⌢M f in(WHILE)
⇒ ⌈I⌉0⌢(⌈C⌉0⌢M f in(S)⌢SCHi)

∗⌢⌈¬C⌉0 (definition forwhile)
⇒ ⌈I ∧¬C⌉0∨ (⌈I ∧C⌉0⌢M f in(S)⌢SCHi)

+⌢⌈¬C⌉0 (WDC∗)
⇒ ⌈I ∧¬C⌉0∨ (⌈[S]I⌉0⌢M f in(S)⌢SCHi)

+⌢⌈¬C⌉0 (2.)
⇒ ⌈I ∧¬C⌉0∨ (M f in(S)⌢⌈I⌉0⌢SCHi)

+⌢⌈¬C⌉0 (4.)
⇒ ⌈I ∧¬C⌉0∨ (M f in(S)⌢SCHi

⌢⌈I⌉0)+⌢⌈¬C⌉0 (conservation of variables’ state,COND2)
⇒ ⌈I ∧¬C⌉0∨ (M f in(S)⌢SCHi)

+⌢⌈I ∧¬C⌉0 (WDC∗)
⇒ (M f in(S)⌢SCHi)

∗⌢⌈I ∧¬C⌉0 (WDC∗)
⇒ (⌈C⌉0⌢M f in(S)⌢SCHi)

∗⌢⌈I ∧¬C⌉0 (WDC∗)
⇒ (⌈C⌉0⌢M f in(S)⌢SCHi)

∗⌢⌈¬C⌉0⌢⌈I ∧¬C⌉0 (WDC∗)
⇒M f in(WHILE)⌢⌈I ∧¬C⌉0 (definition ofwhile)
⇒M f in(WHILE)⌢⌈P⌉0 (3.,WDC∗)

2

Then, we prove the duration formula (the proof is similar to the one in [SH01]) :

1. Assumption :{[S]I}[S,dur([S], I)]{I}
2. By 1, ∏(⌈[S]I⌉0⌢M f in(S))⇒ dur([S], I)
3.

∏(⌈I⌉0⌢M f in(WHILE))
⇒ ∏(⌈I ∧¬C⌉0)∨∏((⌈[S]I⌉0⌢M f in(S)⌢SCHi)

+)⌢ ∏(⌈¬C⌉0) (definition ofwhile and monotony of∏)
⇒ ℓ = 0∨ (dur([S], I)⌢ℓ = 0)+⌢ℓ = 0 (2.,definition of ∏)
⇒ ℓ = 0∨dur([S], I)+ (DC∗)
⇒ dur([S], I)∗ (DC∗)

7

2

Thus we have proved that the rules for thewhile are correct w.r.t. its definition in WDC∗. The proofs for other
substitutions are similar : for instance, the proofs for thebounded and unbounded choice happen to be compatible
with the definition of the rules for theif then elsestructure of [SH01]. That is the least one could have expected
from two formalisms originally based on Hoare’s triple.

Examples The following examples are not meant to reflect actual temporally-constrained problems, but rather to
give the reader an intuition of the mechanism of the generation of duration formulas from the operations.

S =
BEGIN

delay 3;
IF

x ≥0
THEN

delay 1; skip;
ELSE

delay 2; x:=-x;
END;

END

Fig. 3. Example 1

Example 1 The duration formula associated with the substitution in figure 3, knowing that, after execution, we
havex≥ 0, is :

dur([S],x≥ 0) = dur([delay3], [IF...](x≥ 0)⌢dur([IF...],x≥ 0)

=
dur([delay3],(x≥ 0⇒ x≥ 0)∧ (¬x≥ 0⇒−x≥ 0)
⌢dur([x≥ 0 =⇒ delay1;skip],x≥ 0)∨dur([¬x≥ 0 =⇒ delay2;x :=−x],x≥ 0)

=
ℓ = 3∧⌈⌈x≥ 0⇒ x≥ 0)∧ (¬x≥ 0⇒−x≥ 0⌉⌉
⌢(ℓ = 1∧⌈⌈x≥ 0⌉⌉)∨ (ℓ = 2∧⌈⌈−x≥ 0⌉⌉)

= ℓ = 3∧⌈⌈true⌉⌉⌢(ℓ = 1∧⌈⌈x≥ 0⌉⌉)∨ (ℓ = 2∧⌈⌈−x≥ 0⌉⌉)

S =
BEGIN

delay1;
ANY

y
WHERE

y ∈ { a |∃b b>0∧a =2∗b }
THEN

x:=y
END;

END

Fig. 4. Example 2

Example 2The duration formula associated with the substitution in figure 4, knowing that after execution we have
x≥ 0, is :

8

dur([S],x≥ 0) = ℓ = 1∧⌈⌈∀y,y∈ {a|∃b,b > 0∧a = 2∗b}⇒ y > 0⌉⌉

= ℓ = 1∧⌈⌈true⌉⌉

4.2 Use in abstract machines

Temporal correctness of operationsLet us start this section with two remarks :

– Verifying the consistency of the machine invariant with thegenerated temporal formulas is irrelevant : the
invariant helps ensure the variable of the machines are valid between each operation execution, namely at a
particular point in time. In DC, statements made at a point intime can be reduced to the axiom

R

0 = 0, thus
they are not useful for the proof of temporal formulas

– Different operations inside a machine, generally speaking, have different behaviours : the invariant can be
seen as the common subset of what all these operations establish. That is why we need to give the developer
a way of expressing more precise requirements for each operation. These requirements will be predicates
we can base the duration formulas’ generation on. This remark relates to those made in [TS99, section 6.4],
where to each operation corresponds a timed operation, in which temporal constraints are expressed in the
precondition.

Then, all we have to do is associate to each substitution of the system a temporal constraint it must establish. To this
end, we propose to add a new substitution we name TIMING, whose role is to state the temporal constraint of the
substitution it guards. Finally, we have to provide the predicate whose evolution we will watch in the substitution
(theP of figure 2). Then, we have two possibilities :

– Use theINVARIANT of the machine : assuming that the usual B proof obligations have showed that the
invariant is established, it is an informative representation of the state of the variables of the system. The
drawback is that not all the predicates composing the invariant might be useful, and may make the resulting
duration formula unwieldy. Likewise, predicates corresponding to typing of variables will not be much useful,
as a type-checking step should have been realized at the time.

– Another solution is to use a predicate representing what theoperation will have realized, while staying con-
sistent with the invariant of the machine and not containingirrelevant predicates : this solution is presented in
[Pet03, section 4.3.3], in the form of postconditions. Postconditions possess all the characteristics mentioned
above : they contain only predicates relevant for the associated operation, and they are informative enough to
represent the result of the operation.

TIMING
Substitution

POST
Postcondition (in the form of a predicate)

REQUIRES
Temporal constraint

END

Fig. 5. Form of a substitution with a temporal constraint

Thus a substitution with a temporal constraint will have theshape indicated in figure 5. Then, in order to
prove the temporal correctness of the substitution, it suffices to generate the corresponding trace with the provided
postcondition, and check the constraint is verified, thus :

dur([Substitution],Postcondition)⇒ Temporal constraint

Example 1The generated formula for the example of figure 6 on the left side is :ℓ = 1∧⌈⌈x−1≥ 0⌉⌉⇒2(⌈⌈x≥
0⌉⌉), which is easy to prove. Note also that the postcondition is intuitively verified.

9

x←−Example1 =
TIMING

PRE
x ≥1

THEN
delay 1; x:=x-1;

END
POST

x ≥0
REQUIRES

2(⌈⌈x≥ 0⌉⌉)
END

Example2 =
TIMING

x:=100;
WHILE

x ≥1
DO

x:=Example1
INVARIANT

x≥0
VARIANT

x
END

POST
true

REQUIRES
2(⌈⌈x≥ 0⌉⌉)

END

Fig. 6. An example of specification

Example 2In this example (figure 6, on the right side), two substitutions with temporal constraints are nested. We
then have two possibilities :

– Prove the internal substitution, then forget the internal postcondition and time constraint to prove the external
substitution

– Prove the internal substitution, and, instead of re-calculating the part corresponding to the internal substitution,
use the time constraint it establishes.

The generated duration formulas is :(2(⌈⌈x≥ 0⌉⌉))∗⇒ 2(⌈⌈x≥ 0⌉⌉). Though we have not enough space to
develop the proof here, one can see the formula hold : in the case the interval isℓ = 0, then there is no non-zero
interval on which the state⌈⌈x≥ 0⌉⌉ is false, and in the case the interval is non-zero, then the properties of the2
operator allow us to prove the consequence hold.

We have also replaced the calculus of dur([Example1],x≥ 0) with the temporal specification established by
Example1. Indeed, it allows us better precision than using the only invariant, as the postcondition ofExample1
guarantees the invariant is respected (the proof is done at the usual step of verification of the correctness of the
proof obligations).

Modularity Section 4.2 illustrates the way we can validate nested substitutions with temporal constraints. Now,
this is the way proof obligations for operations in "classical" B are generated. We do not want, as stated in [Pet03,
4.3.3], to depend on the code of the called operations to keepa software componentview of B machines. To this
end, we need :

– Code independence towards the operations called in the included machines, i.e. the called operation must
satisfy a contract with the help of which we will be able to validate the current operation, without knowing
the code of the called operation.

– Limited scope of the variables, i.e. an operation need not export a contract containing variables from an
included machine.

The first constraint is achieved, when generating the duration formula, by using the duration formula of the
called operation in the same manner as the nested substitutions of section 4.2.

It is up to the developer to achieve the second constraint, ashe is the one who determines what each operation
must guarantee. Then, the verification of duration formula is done as in section 4.2.

Refinement Refinement inB allows us the checking of that the result of an operation is not inconsistent with the
one of the operation it refines. Thanks to this, we can know that what is calculated by the operation keeps certain
properties. It allows also the use of new variables, more concrete ones (in the programming sense), to realise these
calculi. The verification is then made by expressing the relation between the new variables and those of the refined
machine through a so-calledgluing invariant.

10

However, temporal verification is about theway the operation unfolds, which may cause problems : thus, a
refined operation can have a more precise temporal trace, butis not allowed to redefine its working steps. So, we
have several cases :

MACHINE
LittleExample

VARIABLES
y

INVARIANT
y ∈ IF(NAT1)

INITIALISATION
y :=∅

OPERATIONS
lire(n) =

PRE
n∈ NAT1

THEN
y :=y ∪{n}

END;
m←−maximum =

PRE
y 6=∅

THEN
m :=max(y)

END

REFINEMENT
LittleExample1

REFINES
LittleExample

VARIABLES
z

INVARIANT
z = max(y∪{0})

INITIALISATION
z :=0

OPERATIONS
lire(n) =

PRE
n∈NAT1

THEN
z :=max(z,n)

END;
m←−maximum =

PRE
z 6=0

THEN
m :=z

END

Fig. 7. Machine LittleExample and its refinement

Direct demonstrationIf φ is the duration formula of the operation, andφ′ the duration formula of its refinement,
checkφ′⇒ φ. In that case :

– If new, more concrete, variables are introduced, replacingthose from the refined machine, the formula is
generally not provable. For instance, in figure 7, the variable of the machine, a set, is refined by an integer
variable. This means that, although the new variable corresponds functionally to the refined one (proved by
theB proof obligations), the way they are are calculated is different, and then the different states the variable
can have during the calculus can differ in the abstraction and in the refinement

– The temporal trace must also be strongly similar to the one ofthe abstraction. For instance, in figure 8, the
operationoper2 can not refineoper1, because the formula to prove would beℓ = 5⇒ ℓ = 0, which is false.
This way of designing would force us to have a great temporal precision at the beginning of the modelisation,
and that is not what we wish for the designer.

The contract approachThe contract approach is another approach to ensure that a refinement will not contradict
the operations that might use it : the new operation also fulfils the temporal constraints of the operation it refines.
This corresponds to anoperation refinementapproach.

In the example figure 8, we achieve this by removing the temporal constraints fromoper2, calculating its
temporal trace with the postcondition ofoper1, and checking this trace validates the temporal constraints of
oper1. We have chosen to adopt this more flexible approach, for thetemporal validation of a refinement. We have
just proposed a formal description of postconditions and their refinement in [CMP04]. Then, the only remaining
problem would be the addition of new variables refining the ones from the abstract machine (which corresponds
to data refinement).

11

oper1 =
TIMING

skip
POST

x = x
REQUIRES

ℓ≤ 10
END

oper2 =
TIMING

delay 5;
POST

x = x
REQUIRES

ℓ≤ 10
END

Fig. 8.Example of temporally different refinements

5 Conclusion

After having presented DC and one of its extension suitable for the verification of real-time programs, as well as
some of its properties, we have reminded the reader of the foundations of theB method, and some of the way used
to express temporal problems with it. We have seen that it is possible to use :

– Either the bare formalism, but then we have to face difficulties in the designing and the proof steps
– Or event B completed with known methods, coming from the real-time community, but in that case we have

to face a lack of tools.

Hence we have showed that another way is possible : extendingthe most used formalism with a temporal logic.
This allowed us to define a temporal semantic for B substitutions without modifying the foundations of the seman-
tic, based on set theory. In fact, the opposite effect was achieved : DC, being defined partly on top of the predicate
calculus, allowed us to use the substitutions to find their temporal trace with regard to a postcondition that we
know to be correct (the correctness proof was made during theclassicalB design stage).

Moreover, the temporal validation step of the operations justifies the need for the modular validation of B
machines, by requiring the use of postconditions, and by using the same mechanism as in the call of operations of
included machines.

6 Perspectives

Now that we are able to specify and verify a problem with temporal constraints inB under the usual hypotheses (no
concurrency, termination), what is left is to remove these hypotheses in order to benefit from the expressiveness of
DC, in order to check, for instance, the railroad crossing problem (see [CBR93] for a general description). With
this aim in view, we can express problems with more subtle temporal requirements (for example replacing the
temporal logic used in [LFD96] by DC), with an easier treatment of non-terminating (for instance, the validation
of a mutual exclusion protocol, as in [SH01]).

It can also be interesting to use DC as a way of expressing and validating fairness and liveness constraints in
event B, by expressing time quantifications more naturally (i.e. without using clocks or machines manipulating
time).

Another interest of DC is the ability to express timed automatas (see [JH00]), and vice versa, provided cer-
tain constraints are respected : it then allows the use of several methods at the same time to model a temporal
problem, i.e. a timed automata to specify the temporal behaviour of the model, and use theB method to build the
implementation step by step, with the help of refinement.

In the end,B is also used to validate UML models (see [ML02]). A temporal extension to B will allow the
checking of OCL models with temporal constraints, those being inherited from the corresponding UML model,
since UML 2.0 will include notions of time.

References

[Abr96] Jean-Raymond Abrial.The B Book - Assigning Programs to Meanings. Cambridge University Press, August 1996.
[Abr00] Jean-Raymond Abrial. Event driven sequential program construction. École Jeunes chercheurs en programmation,

March 2000.

12

[BBFM99] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. METEOR : A successful application of B in
a large project. In Wing et al. [WWD99], pages 369–387.

[BF03] Jean-Paul Bodeveix and Mamoun Filali. Machines virtuelles pour le B événementiel. [IRI03], pages 227–242.
[CBR93] Heitmeyer C.L, Labaw B.G, and Jeffords R.D. A benchmark for comparing different approaches for specifying

and verifying real-time systems. InTenth IEEE Workshop on Real-Time Operating Systems and Software. IEEE
Computer Society Press, 1993. http://chacs.nrl.navy.mil/personnel/heitmeyer.html.

[CMP04] Samuel Colin, Georges Mariano, and Vincent Poirriez. A natural extension of B substitutions : postconditions.
Technical report, LAMIH/ROI, 2004. http://www.univ-valenciennes.fr/ROAD/WP/.

[CPM03] Samuel Colin, Vincent Poirriez, and Georges Mariano. Thoughts about the implementation of the duration calculus
with coq. In4th International Workshop on the Implementation of Logics, volume Technical report ULCS-03-018.
University of Liverpool, september 2003. http://www.csc.liv.ac.uk/research/techreports/.

[DCa] http://www.iist.unu.edu/dc/.
[DCb] http://www.iist.unu.edu/home/Unuiist/newrh/III/1/page.html.
[Dut95] Bruno Dutertre. Complete proof systems for first order interval temporal logic. InLogic in Computer Science,

pages 36–43, 1995.
[GH99] Dimitar P. Guelev and Dan Van Hung. Completeness and decidability of a fragment of duration calculus with

iteration. InAsian Computing Science Conference (ASIAN’99), volume 1742 ofLNCS, pages 139–150, Phuket,
Thailand, December 1999. Springer-Verlag. Also presentedat International Conference on Mathematical Founda-
tion of Informatics, Hanoi, October 25-28, 1999.

[Hei99] Søren T. Heilmann.Proof Support for Duration Calculus. Phd-thesis, Department of Information Technology,
Technical University of Denmark, Januar 1999.

[Hei8a] Søren T. Heilmann.PC/DC Users Guide, 1998(a).
[HJMO03] A. Hammad, Jacques Julliand, H. Mountassir, and D.Okalas Ossami. Expression en B et raffinement des sytèmes

réactifs temps réel. [IRI03], pages 211–226.
[HZ97] M.R. Hansen and C.C. Zhou. Duration calculus, logical foundations. InFormal Aspects of Computing, volume 9,

pages 283–330. 1997.
[IRI03] IRISA. Approches Formelles dans l’Assistance au Développement deLogiciels, IRISA Rennes – France, January

2003. IRISA.
[JH00] Zhao Jianhua and Dang Van Hung. Checking timed automata for some discretisable duration properties. InJournal

of Computer Science and Technology, volume 15, pages 423–429. September 2000.
[Lan98] Jean-Louis Lanet. Using the B method to model protocols. InAFADL’98 [LIS98], pages 79–90.
[LFD96] Kevin Lano, J. Fiadeiro, and Jeremy Dick. ExtendingB AMN with concurrency. Technical report, Dept. of

Computing, Imperial College, 1996.
[LIS98] LISI/ENSMA. Approches Formelles dans l’Assistance au Développement deLogiciels, Téléport2 - Avenue 1 -

BP109 - 86960 FUTUROSCOPE Cedex, October 1998. LISI/ENSMA.
[ML02] R. Marcano and N. Levy. Using B formal specifications for analysis and verification of UML/OCL models. In

Workshop on consistency problems in UML-based software development. 5th International Conference on the Uni-
fied Modeling Language, Dresden, Germany, September 2002.

[Nai99] Zhan Naijun. Another formal proof for deadline driven scheduler. Technical Report 169, UNU/IIST, P.O. Box
3058, Macau, august 1999.

[Pan01] P.K. Pandya. Specifying and deciding quantified discrete-time duration calculus formulae using dcvalid. InRT-
TOOLS’2001, Aalborg, August 2001. (affiliated with CONCUR 2001). Technical report TCS-00-PKP-1, Tata
Institute of Fundamental Research, Mumbai, 2000.

[Pet03] Dorian Petit.Génération automatique de composants logiciels sûrs à partir de spécifications formelles B. Thèse
de doctorat, Université de Valenciennes et du Hainaut-Cambrésis, December 2003.

[SH01] François Siewe and Dan Van Hung. Deriving real-time programs from duration calculus specifications. In11th
Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME 2001),
volume LNCS 2144, pages 92–97, Livingston-Edinburgh, Scotland, september 2001. Springer-Verlag. (Technical
Report 222, UNU-IIST, P.O. Box 3058, Macau, December 2000).

[TS99] Helen Treharne and Steve Schneider. Capturing timing requirements formally in AMN. Technical Report CSD-
TR-99-06, Royal Holloway, Department of Computer Science,University of London, Egham, Surrey TW20 0EX,
England, June 1999.

[WWD99] Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors. Proceedings of FM’99: World Congress on Formal
Methods, number 1709 in Lecture Notes in Computer Science (Springer-Verlag). Springer Verlag, September 1999.

[ZGN99] C.C. Zhou, D.P. Guelev, and Z. Naijun. A higher-order duration calculus. InSymposium in Celebration of the Work
of C.A.R. Hoare, Oxford, september 1999. (Technical report 167, UNU-IIST,P.O.Box 3058, Macau, July 1999).

[ZHR91] C.C. Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus ofdurations. InInformation Processing Letters, volume
10(5), pages 269–276. Dezember 1991.

[ZWR95] C.C. Zhou, J. Wang, and A.P. Ravn. A duration calculus with infinite intervals. In H. Reichel, editor,Fundamentals
of Computing Theory, volume 965 of LNCS, pages 16–41. Springer-Verlag, Lübeck,Germany, 1995.

13

