
Thoughts about the implementation of
the Duration Calculus with Coq

Samuel Colin1,2 Samuel.Colin@inrets.fr,
Vincent Poirriez2 Vincent.Poirriez@univ-valenciennes.fr,

Georges Mariano1 Georges.Mariano@inrets.fr

1 INRETS⋆, 20, rue Elisée RECLUS, BP 317 F-59666 Villeneuve d’Ascq Cedex, France
2 LAMIH ⋆⋆, Le Mont Houy, 59313 Valenciennes Cedex 9, France

Abstract. This work is a derivative of studies about the duration calculus , aiming at deciding whether it is sound to
use it as an extension logic for a formal method (namely, the “B method”). Indeed, we wanted to know the feasabil-
ity and the usability, of such a modal logic implemented in a proof assistant. In this paper, two complementary
implementations are described, as well as problems inherited from both sides : the proof system for itself, and the
tweaking of the proof assistant.

1 Introduction

We will present the reasons that drove us to the writing of Coqlibraries for DC (duration calculus), and to that end
we’ll do a quick presentation of the B method.

The B method, a formal method, allows the development of safesoftware, from abstract, mathematical specifica-
tions, to computer code that is proved correct with regard tothose specifications. The steps going from specifications
to code are called refinements. The abstract specifications and the refinements have to be proved correct, through the
proof of so-called proof obligations, that are formulas expressed with predicate calculus and set theory, generated from
the specifications and the refinements.

While this method has convinced the industrial world, it still has limits, e.g. when dealing with problems having
temporal constraints. Some examples of application of the Bmethod to time-constrained problems exist (see for exam-
ple [1, 2]), but the complexity of the generated proof obligations can easily become confusing for both the automatic
theorem prover and the operator who must read the formulas having failed with this prover.

Methods involving the extension of the B method also exist ([3]), and we have chosen to study the extension of the
logic used by B to Duration Calculus. To do so, we needed a proof tool able to handle both normal B logical formulas,
and DC formulas. Coq having several set theory libraries at disposal, we chose it to build a library for DC.

In the section 2 we’ll present the duration calculus, then insection 3 the Coq proof assistant. In section 4 we will
highlight interesting points about the implementation of DC with Coq, and we’ll conclude in sections 5 and 6.

2 Duration Calculus

This section won’t present an in-depth description of the Duration Calculus, we will rather focus on peculiar properties,
which will be of interest in the other sections.

2.1 History

The Duration Calculus was first presented in [4], as a temporal logic based on IL (Interval Logic) [5]. Ever since,
numerous extensions were proposed for DC ([6, 7]), allowingto express more and more complex properties of real-
time systems. An in-depth survey of DC and its properties canbe found in [8].

⋆ Institut National de REcherche sur les Transports et leur Sécurité
⋆⋆ Laboratoire d’Automatique, de Mécanique, et d’Informatique industrielles et Humaines

2.2 Syntax

Let Xi be apropositional temporal letter(interpreted as a boolean function over time intervals),Pi a state variable
(interpreted as a boolean-valued function over time),x,y, . . . global variables (interpreted as real numbers),fi functions
andRi relation symbols. Usually the functions are the standard arithmetic ones (+,∗) and the relations also are the
usual ones (=,≤). The syntax of DC formulas is (functions and relations might be noted with prefix or infix notation,
as syntax is not our main concern) :

formula ::= Atom |¬ formula | formula∨ formula | formula⌢formula |∃x.formula
Atom ::= true | X | R(term,. . . , term)
term ::=x | ℓ |

R

state | f(term,. . . , term)
state ::= 0 | 1 |P | state∨ state |¬ state

The additions of IL to predicate calculus are the special variableℓ and thechopconnector⌢. This connector chops
a formula into two formulas representing the valid predicates on the first part of the time interval and the second part,
respectively. Theℓ variable represents the length of the current time interval, i.e. the value ofℓ is influenced by the
chopconnector.

The additions of DC to IL are represented by the duration operator
R

and the state expressions. These have the
expressive power of propositional logic, and the duration operator allows to express properties on these states and on
logical relations between them.

2.3 Semantics

The most direct way to interpret DC formulas is to do so over time intervals. Let the following interpretations functions
and definitions domains be:

– Time, usually represented by the real numbersR

– TimeInterval ={(b,e)|b,e∈ Time∧b≤ e}
– Val = term→ TimeInterval→ R

– ValState = state→ Time→ {0,1}
– T : ValState
– V : Val
– I : formula→ ((Val×ValState)×TimeInterval) → {true, f alse}

For readability reasons, in the description ofI , V andT are implied. The same remark applies for the description of
V andT .

I (X)([b,e]) = XI ([b,e])
I (R(θ1, . . . ,θn))([b,e]) = R(c1, . . . ,cn) whereci = V (θi)([b,e])
I (¬φ)([b,e]) = ¬I (φ)([b,e])
I (φ1∨φ2)([b,e]) = I (φ1)([b,e])∨ I (φ2)([b,e])
I (∃x.φ)([b,e]) = I (φV ′)([b,e]) whereV (y) = V ′(y) for y 6= x
I (φ1

⌢φ2)([b,e]) = ∃m.(I (φ1)([b,m])∧ I (φ2)([m,e])) for m∈ [b,e]
I (true)([b,e]) = true

V (x)([b,e]) = x
V (ℓ)([b,e]) = e−b
V (f (θ1, . . . ,θn))([b,e]) = f (c1, . . . ,cn) whereci = V (θi)([b,e])
V (

R

S)([b,e]) =
R e

bT (S)(t)dt

T (0)(t) = 0
T (1)(t) = 1

T (S∨T)(t) =

{

0 if T (S)(t) = 0 andT (S)(t) = 0
1 otherwise

T (¬S)(t) = 1−T (S)(t)
T (P)(t) = PT (t)

2

A proviso is added for the state variables, which are interpreted as functions over time : for the functions to be
integrable, they need to befinitely variableover the considered time interval. For example, the function :

PT (t) =

{

0 if t is irrational
1 otherwise

2.4 Examples

Some examples are inspired from [8]:

1. Let the state variablesGas and Flame be the expressions of the event “gas is produced” and “flame exists”,
respectively. Then this DC formula states that during the non-zero time interval, each time gas is produced, the
flame must be present :

R

(Gas⇒ Flame) = ℓ∧ ℓ > 0

2. The formulaℓ = 10⌢ℓ = 5 states that in the first part of the time interval is 10 time units long, and the second part
5 time units long.

3. true⌢(φ⌢true) states that theφ formula is valid in some sub-interval. This special construction is also noted3φ,
and is comparable with the3 one can find in other temporal logics.

4. Similarly, the formula¬3(¬φ) is noted2φ, and is interpreted as : “for any time sub-interval, theφ formula is
valid”.

Now an example of the semantics of DC, over a given time interval [b,e], with e> b:

Example 1.Let’s suppose thatGasis a state whose value is 1 all over the interval, andFlamea state whose value is 0
in the first half of the [e,b] time interval, 1 in the second. Intuitively, it means that the gas is leaking, before it is set on
fire :

I (
R

(Gas⇒ Flame) = ℓ∧ ℓ > 0)([b,e]) ≡ I (
R

(Gas⇒ Flame) = ℓ)([b,e])∧ I (ℓ > 0)([b,e])
≡ V (

R

(Gas⇒ Flame))([b,e]) = V (ℓ)([b,e])∧V (ℓ)([b,e]) > V (0)([b,e])
≡

Re
bT ((Gas⇒ Flame)(t)dt)([b,e]) = e−b∧e−b> 0

≡
Re

bT ((¬Gas∨Flame)(t)dt)([b,e]) = e−b∧ true
≡ e−b

2 = e−b

Because¬GasandFlameare both 0 in the first half of the interval. The obtained formula is false, ase> b. So the
given statesGasandFlamedon’t fulfil the requirement.

2.5 Proof system

We will only underline in this section some hard points of theproof system of [8], on which we have based the
implementation described in section 4. Now for some definitions beforehand:

Definition 2. A DC formula is calledrigid if it doesn’t contain any state variable, propositional letter orℓ symbol. It
is otherwise calledflexible

Definition 3. A DC formula is calledchop freeif the ⌢ doesn’t occur in the formula

Definition 4. The termθ is free for x inφ if x doesn’t occur freely inφ within the scope of the quantified variabley, y
occurring inθ

This last definition is used later in a side-condition to address the problem of variable instanciation.
The axioms of the proof system are distributed between the ones coming from IL, and the ones coming from DC.

For example:

Example 5.Some IL axioms:

3

ℓ ≥ 0 The length of a time interval can’t be negative
φ⌢ψ ⇒ φ if φ is rigid If a rigid formula is valid on a part of an interval, it is also

valid on the whole interval, as it is not influenced by tem-
poral variables or symbols

Example 6.Some DC axioms:
R

1 = ℓ The “always true” state lasts the whole time interval
R

S1 =
R

S2 if S1 ⇔ S2 holds in
propositional logic

Equivalent states have the same duration

Some inference rules are added, and the ones inherited from predicate calculus are modified.
Two noticeable things about the proof system is that:

1. Side-conditions might require non-trivial analysis of the involved formulas
2. Inference rules doesn’t hold hypotheses, as in sequent calculus, for example. Thus some of them won’t be valid if

coded “as is” in a prover (these problems have already been solved in [9], see section 4 for more information).

For example:

Example 7.Some DC inference rules (inherited from IL inference rules):

∀x.φ(x)

φ(θ)
if θ is free forx in φ(x) and

{

eitherθ is rigid
or φ(x) is chop free

φ ⇒ ψ

(φ⌢Φ) ⇒ (ψ⌢Φ)

3 The Coq proof assistant

3.1 Presentation

Paraphrasing the Coq reference manual (see [10]), “Coq is a proof assistant for higher-order logic, allowing the devel-
opment of computer programs consistent with their formal specification”.

Coq’s logical language is based on theCalculus of Inductive Constructions, a variety of type theory, which allows
manipulations of higher order terms in a consistent framework, ensured by type-checking of formulas. Still citing
the Coq reference manual, “It is possible to understand the Calculus of Inductive Constructions at a higher level, as
a mixture of predicate calculus, inductive predicate definitions presented as typed PROLOG, and recursive function
definitions close to the language ML”.

One of the noticeable properties of Coq (even if not useful for the comprehension of next section) is its ability to
extract programs from proofs, endorsing hereby the Curry-Howard isomorphism.

3.2 Description

Coq may be used interactively, in a console toplevel or in an editor with a dedicated mode (e.g. ProofGeneral for
Emacs), or with the Coq compiler (producing a compiled file containing the proved theorems and the corresponding
lambda-terms, to speed up the development of complex proofsrequiring lots of lemmas).

Syntax As Coq is first meant to be used interactively, it provides a natural feeling for building proofs. The allowed
terms of Coq can be subdivided into three categories:

1. Thevernacularterms : these are the commands that allow one to add definitions, telling Coq we want to prove a
theorem, or changing Coq’s behaviour.

Example 8.Some vernacular commands :

4

– Theorem ModusPonens:(A,B:Prop)(A /\ (A -> B)) -> B. tells Coq we want to prove the formula∀A,B(A∧
(A⇒ B) ⇒ B).

– Definition excluded_middle := (A:Prop) A \/ ~A. allows to associate the excluded middle formula
to a variable namedexcluded_middle.

– Quit. allows to quit Coq’s toplevel

2. The tactics : these are the commands usedduring the proof of a theorem, to specify what kind of rule we want
to use, e.g. introduction rules, elimination rules, apply atheorem,etc. There are also higher level tactics used to
describe complex but repetitive proof commands.

Example 9.Some tactics commands :
– Intros x P. tells Coq to apply introduction rules to the current goal, and naming the obtained hypothesesx

andP.
– Repeat Left. allows to choose in a goal the leftmost innermost term. For example it would produce the goal

P1 if applied to the goal((...(P1∨P2)...∨Pn−1)∨Pn).

3. The grammar redefinition language : it allows the user to define its own grammar for new terms or definitions he
introduced, and even for complex tactics. There are exampleof it in section 4

3.3 Examples

Let’s show a proof example with Coq :

Example 10.This example is a possible proof for the formula (A,B,C being propositions) :∀A,B,C(A∧B)∨(A∧C) ⇒
A

Theorem easyproof:(A,B,C:Prop)(A /\ B) \/ (A /\ C) -> A.
Intros.
Elim H.
Intros.
Elim H0.
Intros.
Assumption.
Intros.
Elim H0.
Intros.
Assumption.
Qed.

The proofs are done the top-down way. This corresponds to thefollowing proof tree (where inference steps are
annotated with the tactics commands) :

Assumption.
H,H0,H1 : A,H2 : B⊢ A

Intros.
H,H0 ⊢ A⇒ B⇒ A

Elim H0.
H,H0 : A∧B⊢ A

Intros.
H ⊢ A∧B⇒ A

Assumption.
H,H0,H1 : A,H2 : C⊢ A

Intros.
H,H0 ⊢ A⇒C⇒ A

Elim H0.
H,H0 : A∧C⊢ A

Intros.
H ⊢ A∧C⇒ A

Elim H.
H : (A∧B)∨ (A∧C) ⊢ A

Intros
⊢ (A∧B)∨ (A∧C)⇒ A

5

(x:sort), /\, \/,
->, ~

These are the symbols for universal quantification (for a variable x of sortsort),
conjunction, disjunction, implication, negation respectively. More generally con-
nectors of the usual logic are represented by visually similar ASCII symbol.

Intros Put the premisses of the goal in the hypotheses
Elim H Apply an elimination rule for the given formulaH
Assumption Attempts to solve the current goal by telling Coq the goal is also present in the

current hypotheses
Qed Ends the proof and saves the generated proof term.

An additional reason that made us choose Coq, was the disponibility of a library of definitions and theorems for
real numbers, as DC can be used as well in the domain of integers as in the domain of real numbers.

4 Two paths towards an implementation of DC with Coq

The proof system of DC presented in [8] isn’t a sequent-stylesystem, and theℓ variable is context-dependent w.r.t.
the⌢ connector. Thus the inference rules and axioms of this proofsystem might raise incompatibilities with the ones
already present in Coq (see section 4.2). That’s why we have defined two approaches so as to implement DC’s proof
system in Coq.

Despite those different approaches, in each case grammar redefinitions had been done, in order to ease the proof
process. For example, thediamondmeaning “for some sub-interval” (see 2.4) has been given theASCII symbol<>.

Side-conditions involving the analysis of the formula, also had been coded with inductive definitions or functions.
We will focus in the following, on the IL part of the DC implementations, as DC-specific axioms and inference

rules didn’t bring much problems.
Also notice that problems we’ll speak about have been solvedin [9], but Isabelle/HOL being a meta-logic, it’s thus

easier to build a full logic in it than coping peculiarities of already existent logic one can base the implementation on.In
this point of view, the shallow-embedded Coq implementation of DC in section 4.1 is comparable to the Isabelle/HOL
one.

4.1 Shallow-embedded implementation

In this implementation, we simply added the missing connectors of DC with their correct type, and defined the prop-
erties of these connectors through axioms and inference rules, as described in [8].

The development libraries have been divided by logical system and by functionality : there are an IL axioms library,
an IL syntax definition and an IL theorems library, and based on that, a DC axioms library, a DC syntax definition
library and a DC theorems library. Hence we can say that the shallow-embedded implementation ismodular, as one
can develop a DC extension (e.g. [11]) without having to knowthe internals of the DC library.

Example 11.Here are the definitions of the connectors, along with grammar and syntax redefinitions.R is the type of
real numbers,Prop the type of propositions, and the quotes around the definition ofpoint helps Coq’s parser knowing
that it requires the axioms and definitions of the real numbers library.

Parameter l:R.
Parameter chop:Prop->Prop->Prop.
Definition point:=‘‘l == R0‘‘.
Definition sometime:=[P:Prop](chop True (chop P True)).
Definition always:=[P:Prop]~(sometime ~P).

Grammar constr constr5:=
chop [constr5($c1) "^^" constr5($c2)] -> [(chop $c1 $c2)].

Syntax constr level 5 :
chop [$t1 ^^ $t2] -> [[<v 0> $t1:L "^^" $t2:L]].

6

Grammar constr constr2:=
timepoint ["[[]]"] -> [point]

|sometime ["<>" constr2($c)] -> [(sometime $c)]
|always ["[]" constr2($c)] -> [(always $c)].

Syntax constr level 2 :
timepoint [point] -> [[<v 0> "[[]]"]]

|sometime [(sometime $t)] -> [[<h 0> "<>" $t:L]]
|always [(always $t)] -> [[<h 0> "[]" $t:L]].

With these syntax redefinitions, we can write axioms two ways, for example:

Axiom chop_assoc:(p,q,r:Prop)(chop (chop p q) r) <-> (chop p (chop q r)).

which is equivalent to:

Axiom chop_assoc:(p,q,r:Prop)((p ^^ q) ^^ r) <-> (p ^^ (q ^^ r)).

As Coq inference rules are hard-coded in its core, the inference rules for DC are defined through axioms.

Example 12.For example, the necessitation rule of DC. After having defined the axioms, we also define tactics so the
user has the impression to use an inference rule instead of a simple axiom.

Axiom necessitation_left:(p,q:Prop)p -> ~(~p ^^ q).
Axiom necessitation_right:(p,q:Prop)p -> ~(q ^^ ~p).

Tactic Definition NecessitationLeft:=Apply necessitation_left.
Tactic Definition NecessitationRight:=Apply necessitation_right.

The specific side-conditions of DC are coded by inductive definitions:

Example 13.The rigidity side-conditions is (not all the induction cases are represented):

Inductive rigid:Prop->Prop:=
| rig_true : (rigid True)
| rig_false : (rigid False)
| rig_chop : (p,q:Prop) (rigid p)/\(rigid q) -> (rigid (chop p q))
| rig_imp : (p,q:Prop) (rigid p)/\(rigid q) -> (rigid (p -> q))
| rig_and : (p,q:Prop) (rigid p)/\(rigid q) -> (rigid (p /\ q))
...

The cases when a formula is not rigid do not belong to the inductive definition, so as when trying to prove the
rigidity of a formula, the inference system will be blocked.Then axioms involving rigidity are written e.g. as follows:

Axiom rigid_chop_left:(p,q:Prop)(rigid p)->(p ^^ q)->p.

Then the theorems are proved the normal way in Coq.

Example 14.The Coq proof of2(A⇒ B) ⇒ (2A⇒ 2B)

Theorem always_distr_implies:(A,B:Prop)[](A->B) -> ([]A -> []B).
Unfold always; Unfold sometime.
Intros A B alw_A_B alw_A.
Unfold not; Intros som_nB.
Apply alw_A_B.

7

Monotony; Intros nB__True.
Monotony; Intros nB.
Unfold not; Intros A_B.
Apply alw_A.
Monotony; Intros nB__True2.
Monotony; Intros nB2.
Tauto.
Qed.

Note that the proviso of term freedom for variables (“The term θ is free for x inφ” in the section 2.5) wasn’t
necessary to define, as this proviso actually prevents abusive scoping of newly introduced variables. Indeed Coq is
aware of variables bindings at any level.

Unfortunately, problems that can be easily solved in [9] can’t have an easy solution here : as we don’t define the
whole logical system “from scratch”, we are forced to deal with the already present logical connectors and inference
rules.

Let’s take for example the problem of equality, described in[9, p.21]. Usually one term can be replaced by another
if they are equal. But this is not true for Duration calculus,for example:

Example 15.

ℓ = 3, ℓ = 3⇒ ℓ = 2⌢ℓ = 1⊢ 3 = 3⇒ 3 = 2⌢3 = 1

This problem is addressed by constraining the equality withan “always” operator, but this can’t be done for the
shallow-embedded DC in Coq : the equality is already defined (this is Leibniz’s one), and redefining it would be
contrary to a shallow-embedding approach.

Other similar problems involve the⌢ operator andℓ (and, by extension, the duration operator, as one of the axioms
states that

R

1 = ℓ).
One way to solve such a problem, is to exploit the ability of Coq to allow one to define “plugins” so to redefine

tactics and inference rules through the language Coq is written in, but this solution is a difficult one, and makes us
lose the advantages deep-embedding could offer us (i.e. using already present logical connectors and inference rules
without worrying).

4.2 Deep-embedded

In this implementation, all operators involved in the logic(even the ones coming from predicate calculus) are redefined.
One could compare this approach to the Isabelle/HOL’s one [9], as we here use Coq mostly as an inference engine.
The main advantage of this approach is the absence of conflictbetween the implemented proof system and the proof
system of the tool itself.

Example 16.Definition of a formula:

Inductive Formula:Type :=
| FTrue : Formula
| FLetter : Name -> Formula
| FNot : Formula -> Formula
| FOr : Formula -> Formula -> Formula
| FExists : (DCTerm -> Formula) -> Formula
| FChop : Formula -> Formula -> Formula
| Flt : DCTerm -> DCTerm -> Formula
| Feq : DCTerm -> DCTerm -> Formula
.

Then the validity of a formula, is stated by proving :plvalid f ormula. plvalid is an interpretation function
defined by axioms. One could write an interpretation function using the original semantic of DC, i.e. interval numbers.

8

Then with the help of syntax redefinition allowed by Coq, one can write the formulas two ways:

Example 17. 1. Axiom pos_interval:%‘‘l>=0‘‘%.
2. Axiom pos_interval:(plvalid (Fge length (RVal R0))).

The special functions needed for the checking of some side-conditions are also coded inductively, but with func-
tions this time:

Example 18.In this example, due to the nature of the existencial quantification, we do an instanciation so we can
analyse further the formula.

Fixpoint chop_free [f:Formula]:Prop:=
Cases f of
| FTrue => True
| (FLetter _) => True
| (FNot g) => (chop_free g)
| (FOr g h) => (chop_free g) /\ (chop_free h)
| (FExists z) => (chop_free (z (RVal R0)))
| (FChop _ _) => False
| (Flt u v) => True
| (Feq u v) => True
end.

Then, when a proof requires to state the rigidity of a formula, one simply has to make a simplification to find out
if the formula is rigid or not (True of False after the simplification, respectively).

So, even if the deep embedded approach is still at early stages, we already have positive results for this implemen-
tation:

1. The inductive definitions of formulas gives us an easier definition of side-conditions
2. The grammar and syntax redefinitions help us to have a readable system
3. The ability to interpret formulas over miscellaneous paradigms gives us the possibility to prove all the modifica-

tions of the proof system we could make for e.g. the deep-embedded implementation

But there are also drawbacks:

1. The system is not easy to extend : there are many flavours of DC out there (e.g. [6, 7, 11]), and having a static
definition for the shape of formulas makes a slight modification having repercussions all over the system, grammar
redefinitions and side-condition functions.
Contrary to the shallow-embedded implementation, extending DC here requires adding the new connectors in the
inductive definition above, adding axioms and modifying interpretation functions possibly all over the library,
making this deep-embedded implementation a much less modular one than the shallow-embedded one.
Note that this remark would also be true for any implementation “from scratch” (see [9]).

2. Having to define all axioms and inference rules for well-known logical operators from the beginning can be a
source of bugs. Indeed, in a shallow-embedded implementation, we can make the decision to trust the definition
of already present connectors. Moreover building such an implementation is time-consuming.

5 Perspectives

What made us stop our work, besides other developments, in each one of the implementation is:

– The conflicts caused by the temporal logical connector⌢ and the special variableℓ with the inference rules of the
proof system, for the shallow-embedded implementation

9

– The time-consuming task of defining the whole proof system from the beginning, for the deep-embedded imple-
mentation

In [9], the former is solved by the modification of the axioms and rules causing those conflicts : the equality is
redefined, the DC-specific inference rules are modified to take in account that the inference system is a sequent-style
one. Moreover, those modifications are not proved with pen and paper, but are proved with an earlier implementation
of DC with PVS [12]. In short, modifications for the implementation of a proof system in a proof tool are proved with
another proof tool.

This is where the deep-embedded implementation can help us :we can use it to prove modifications of the proof
system that would solve the problems of the shallow-embedded implementation.

An interesting track to solve those problems, is to considerℓ no more as a variable (because of its peculiar prop-
erties), but rather as predicates over values of the chosen numeric domain (real numbers usually) with the adequate
axioms.

Example 19.E.g., withinterval_le stating that the current time interval is lower than or equalto some value, we define
the axioms relating this predicate with “normal” order relations:

interval_le(x)∧x≤ y⇒ interval_le(y)

6 Conclusion

As explained in section 1, this work is an effort to have a proof tool for both normal logic and DC at disposal.
We built two implementations, a shallow-embedded and a deep-embedded one, having in mind different uses for

them : the former would be used as a proof tool allowing one to reason on formulas and specifications made with
DC, and the latter would allow one to reason on the DC proof system itself, e.g. to prove the equivalence of two
interpretations of DC, or find decidability results.

The shallow-embedded implementation has shown us problemsalready faced in [9] with solutions that are not
easy to apply with Coq, and the deep-embedded implementation, whereas long to define, can help us modify the proof
system so as to solve these problems. So the same proof tool isused both to implement a proof system and to prove
properties of this proof system.

7 Thanks

I would like to thank Vincent Poirriez for his enlightening remarks, Georges Mariano, the team of the Coq project for
making such a powerful proof tool.

References

1. Lano, K.: Specifying reactive systems in B AMN. LNCS1212(1997) 242–275
2. Treharne, H., Schneider, S.: Capturing timing requirements formally in AMN. Technical Report CSD-TR-99-06, Royal

Holloway, Department of computer science, Egham, Surrey TW20 0EX, England (1999)
3. Hammad, A., Julliand, J., Mountassir, H., Okalas Mossami, D.: Expression en B et raffinement des systèmes réactifs temps

réel. In: AFADL’2003. (2003) 211–225
4. Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. In:Information Processing Letters. Volume 10(5). (1991) 269–276
5. Dutertre, B.: On first order interval temporal logic. Technical Report CSD-TR-94-3, University of London, Department of

computer science, Egham, Surrey TW20 0EX, England (1995)
6. Zhou, C., Wang, J., Ravn, A.: A duration calculus with infinite intervals. In Reichel, H., ed.: Fundamentals of Computing

Theory. Volume 965 of LNCS. Springer-Verlag, Lübeck, Germany (1995) 16–41
7. Zhou, C., Guelev, D., Naijun, Z.: A higher-order durationcalculus. In: Symposium in Celebration of the Work of C.A.R.

Hoare, Oxford (1999) (Technical report 167, UNU-IIST, P.O.Box 3058, Macau, July 1999).
8. Hansen, M., Zhou, C.: Duration calculus, logical foundations. In: Formal Aspects of Computing. Volume 9. (1997) 283–330
9. Heilmann, S.T.: Proof Support for Duration Calculus. Phd-thesis, Department of Information Technology, TechnicalUniversity

of Denmark (1999)

10

10. : Coq (1989-2003) http://coq.inria.fr.
11. Guelev, D., Hung, D.: Completeness and decidability of afragment of duration calculus with iteration. In: Asian Computing

Science Conference (ASIAN’99). Volume 1742 of LNCS., Phuket, Thailand, Springer-Verlag (1999) 139–150 Also presented
at International Conference on Mathematical Foundation ofInformatics, Hanoi, October 25-28, 1999.

12. Skakkebæk, J.U.: A Verification Assistant for a Real-Time Logic. Phd-thesis, Department of Computer Science, Technical
University of Denmark (1994) Also available as Technical Report ID-TR: 1994-150.

11

