Thoughts about the implementation of
the Duration Calculus with Coq

Samuel Colid2 Sanuel . Col i n@nrets. fr,
Vincent PoirrieZ Vi ncent . Poi rri ez@ini v- val enci ennes. fr,
Georges MarianbGeor ges. Mari ano@nrets. fr

1 INRETS, 20, rue Elisée RECLUS, BP 317 F-59666 Villeneuve d’AscqeXeéfrance
2 | AMIH **, Le Mont Houy, 59313 Valenciennes Cedex 9, France

Abstract. This work is a derivative of studies about the duration dakyaiming at deciding whether it is sound to
use it as an extension logic for a formal method (namely, Biméthod”). Indeed, we wanted to know the feasabil-
ity and the usability, of such a modal logic implemented inraop assistant. In this paper, two complementary
implementations are described, as well as problems imakefibm both sides : the proof system for itself, and the
tweaking of the proof assistant.

1 Introduction

We will present the reasons that drove us to the writing of Wargries for DC (duration calculus), and to that end
we’ll do a quick presentation of the B method.

The B method, a formal method, allows the development of safievare, from abstract, mathematical specifica-
tions, to computer code that is proved correct with regattidse specifications. The steps going from specifications
to code are called refinements. The abstract specificatiwhthe refinements have to be proved correct, through the
proof of so-called proof obligations, that are formulasresged with predicate calculus and set theory, generated fr
the specifications and the refinements.

While this method has convinced the industrial world, if $tas limits, e.g. when dealing with problems having
temporal constraints. Some examples of application of theeBhod to time-constrained problems exist (see for exam-
ple [1, 2]), but the complexity of the generated proof otiigas can easily become confusing for both the automatic
theorem prover and the operator who must read the formulasdailed with this prover.

Methods involving the extension of the B method also ex&)(fand we have chosen to study the extension of the
logic used by B to Duration Calculus. To do so, we needed afpoobable to handle both normal B logical formulas,
and DC formulas. Coq having several set theory librariessgtogal, we chose it to build a library for DC.

In the section 2 we’ll present the duration calculus, thesdction 3 the Coq proof assistant. In section 4 we will
highlight interesting points about the implementation & @ith Coq, and we’ll conclude in sections 5 and 6.

2 Duration Calculus

This section won't present an in-depth description of thesian Calculus, we will rather focus on peculiar propestie
which will be of interest in the other sections.

2.1 History

The Duration Calculus was first presented in [4], as a tenipogic based on IL (Interval Logic) [5]. Ever since,
numerous extensions were proposed for DC ([6, 7]), alloviingxpress more and more complex properties of real-
time systems. An in-depth survey of DC and its propertiesteafound in [8].

* Institut National de REcherche sur les Transports et leau$é
** Laboratoire d’Automatique, de Mécanique, et d’'Informaggndustrielles et Humaines

2.2 Syntax

Let X; be apropositional temporal lettefinterpreted as a boolean function over time intervdfsh state variable
(interpreted as a boolean-valued function over tirrg),. . . global variables (interpreted as real numbefdynctions
andR; relation symbols. Usually the functions are the standaittiraetic ones , x) and the relations also are the
usual ones=£, <). The syntax of DC formulas is (functions and relations nhiggnnoted with prefix or infix notation,
as syntax is not our main concern) :

formula ::= Atom |- formula | formulav formula | formula formula |3x.formula
Atom ::=true | X | R(term,..., term)
term ::=x| ¢ | [state | f(term,..., term)
state ::= 0| 1 P | statev state |- state

The additions of IL to predicate calculus are the speciahide/ and thechopconnector™. This connector chops
a formula into two formulas representing the valid predisain the first part of the time interval and the second part,
respectively. The variable represents the length of the current time inteial the value of is influenced by the
chopconnector.

The additions of DC to IL are represented by the duration aperf and the state expressions. These have the
expressive power of propositional logic, and the duratiperator allows to express properties on these states and on
logical relations between them.

2.3 Semantics

The most direct way to interpret DC formulas is to do so ovaetintervals. Let the following interpretations functions
and definitions domains be:

— Time, usually represented by the real numiiRrs

— Timelnterval ={(b,e)|b,e € TimeAnb < e}

— Val =term— Timelnterval— R

— ValState = state~ Time — {0, 1}

— T : ValState

- 7V :Val

— I :formula— ((Val x ValStatg x Timelnterva) — {true, false}

For readability reasons, in the descriptioniofl’ and‘T” are implied. The same remark applies for the description of
7 and7.

1(X)([b,¢l) = X([b,€])
I(R(B1,.--,6n))([b,€]) = R(cy,...,cn) wherec; = V(6;)([b, €])
I(=@)([b.€]) = ~1(¢)([b,€])
I(@rV @2)([b, €f) = I(@u)([b,€]) v I(@2)([b, €])
1(3x.9)([b,€]) = I(@y)([b,€]) whereV(y) = 7(y) fory # x
(@1 @2)([b,€]) = 3m.(1(@r)([b,m]) A I(gz)([m.€})) for m e [b, €]
I(true)([b,€]) = true
V(x)([b,€]) =X
V(€)([b,€]) =e-b
V(f(B1,...,6n))([b,€]) = f(cy,...,Cn) Wherec; = V(6;)([b,€])
V(/S)([b,€)) = [5T(9(t)dt
T(0)(t) =0
T(1)(t) =1
0if 7(S)(t)=0andT(S)(t)=0
TSV = {1 otherwise
T(-S)t) =1-T(S(t)
T(P)(t) =Pr(t)

A proviso is added for the state variables, which are inttgat as functions over time : for the functions to be
integrable, they need to Ifimitely variableover the considered time interval. For example, the fumnctio

Oif tisirrational
Pr(t) = { 1 otherwise

2.4 Examples
Some examples are inspired from [8]:

1. Let the state variableGas and Flame be the expressions of the event “gas is produced” and “flansts&x
respectively. Then this DC formula states that during the-pero time interval, each time gas is produced, the
flame must be present :

J(Gas= Flame =¢A{>0

2. The formuleZ = 10~ ¢ = 5 states that in the first part of the time interval is 10 tim#slong, and the second part
5 time units long.

3. true™ (¢ true) states that the@formula is valid in some sub-interval. This special constian is also notee>q,
and is comparable with theé one can find in other temporal logics.

4. Similarly, the formula-<(—@) is notedO, and is interpreted as : “for any time sub-interval, ghéormula is
valid”.

Now an example of the semantics of DC, over a given time iaidbye], with e > b:

Example 1.Let’s suppose thabasis a state whose value is 1 all over the interval, Bhaimea state whose value is 0
in the first half of the [e,b] time interval, 1 in the seconduiitively, it means that the gas is leaking, before it is set o
fire :

I(f(Gas= Flame) = ¢ AL > 0)([b,€]) = I(f(Gas=- Flame) = ¢)([b,€]) A I(¢ > 0)([b,€])
VMG%:HWQKM®=¢%XW®AV(G €) > V(0)([b,€])
[T ((Gas= Flame)(t)dt)([b,e]) =e—bAe—b>0

[T ((—Gasv Flame)(t)dt)([b, e]): e—bAtrue

e—b_
2 =e-b

Because-GasandFlameare both 0 in the first half of the interval. The obtained folaris false, ag > b. So the
given state$sasandFlamedon't fulfil the requirement.

2.5 Proof system

We will only underline in this section some hard points of gireof system of [8], on which we have based the
implementation described in section 4. Now for some defingibeforehand:

Definition 2. A DC formula is calledigid if it doesn’t contain any state variable, propositionaidebr¢ symbol. It
is otherwise calledlexible

Definition 3. A DC formulais callecchop freeif the — doesn’t occur in the formula

Definition 4. The term@ is free for x in@if x doesn’t occur freely inp within the scope of the quantified varialyley
occurring in@

This last definition is used later in a side-condition to @&sdrthe problem of variable instanciation.
The axioms of the proof system are distributed between tles oaming from IL, and the ones coming from DC.
For example:

Example 5.Some IL axioms:

>0 The length of a time interval can’t be negative
oY = oif @isrigid If a rigid formula is valid on a part of an interval, it is also

valid on the whole interval, as it is not influenced by tem-
poral variables or symbols

Example 6.Some DC axioms:

J1=¢ The “always true” state lasts the whole time interval
/S = /S if S & S holds inEquivalent states have the same duration
propositional logic

Some inference rules are added, and the ones inherited fieficpte calculus are modified.
Two noticeable things about the proof system is that:

1. Side-conditions might require non-trivial analysistod involved formulas
2. Inference rules doesn't hold hypotheses, as in sequkntdgs, for example. Thus some of them won't be valid if
coded “as is” in a prover (these problems have already bdeedsin [9], see section 4 for more information).

For example:
Example 7.Some DC inference rules (inherited from IL inference rules)
VX.9(X) either® is rigid
or @(x) is chop free

if 8is free forxin @(x) and{
o=y
(¢ @)= (W)

3 The Coq proof assistant

3.1 Presentation

Paraphrasing the Coq reference manual (see [10]), “Coqrsd pssistant for higher-order logic, allowing the devel-
opment of computer programs consistent with their formatgjration”.

Cog’s logical language is based on tBalculus of Inductive Constructiona variety of type theory, which allows
manipulations of higher order terms in a consistent framreyvensured by type-checking of formulas. Still citing
the Coq reference manual, “It is possible to understand #ieullis of Inductive Constructions at a higher level, as
a mixture of predicate calculus, inductive predicate diéfing presented as typed PROLOG, and recursive function
definitions close to the language ML".

One of the noticeable properties of Coq (even if not usefuttie comprehension of next section) is its ability to
extract programs from proofs, endorsing hereby the Cuioyhid isomorphism.

3.2 Description

Coq may be used interactively, in a console toplevel or in ditboewith a dedicated mode (e.g. ProofGeneral for
Emacs), or with the Coq compiler (producing a compiled filataming the proved theorems and the corresponding
lambda-terms, to speed up the development of complex preqtsring lots of lemmas).

Syntax As Coq is first meant to be used interactively, it provides iz feeling for building proofs. The allowed
terms of Coq can be subdivided into three categories:

1. Thevernacularterms : these are the commands that allow one to add definitieling Coq we want to prove a
theorem, or changing Coq’s behaviour.

Example 8.Some vernacular commands :

— Theor em MdusPonens: (A B: Prop) (A /\ (A -> B)) -> B. tells Cogwe wantto prove the formutd, B(AA
(A=B)=B).

— Definition excluded_mddle := (A Prop) A\/ ~A allows to associate the excluded middle formula
to a variable nameelxcl uded_ni ddl e.

— Quit. allows to quit Coq's toplevel

2. The tactics : these are the commands whaihg the proof of a theorem, to specify what kind of rule we want
to use, e.g. introduction rules, elimination rules, apptheorem,etc. There are also higher level tactics used to
describe complex but repetitive proof commands.

Example 9.Some tactics commands :

— Intros x P. tells Coq to apply introduction rules to the current goal aaming the obtained hypotheses
andP.

— Repeat Left. allows to choose in a goal the leftmost innermost term. Fangle it would produce the goal
Py if applied to the goa((...(PLV P2)... VPy_1) V Pn).

3. The grammar redefinition language : it allows the user fmdéts own grammar for new terms or definitions he
introduced, and even for complex tactics. There are exaofplén section 4

3.3 Examples
Let’s show a proof example with Coq :

Example 10.This example is a possible proof for the formutaB, C being propositions)vA, B,C(AAB)V (AAC) =
A

Theor em easyproof: (A B, CProp)(A/\ B) \/ (A/\ QO -> A
Intros.
ElimH
Intros.

El i m HO.
Intros.
Assunpt i on.
Intros.

El i m HO.
Intros.
Assunpti on.
Qed.

The proofs are done the top-down way. This corresponds téottoeving proof tree (where inference steps are
annotated with the tactics commands) :

Assunpti on. Assunpti on.
H,Ho,HliA,HziBl—A H,H07H12A7H2:C'—A
I ntros. I ntros.
HHoFA=B=A HHFA=C=A
Eli m HO. Eli m HO.
H,Ho: AABFA H,Ho: AACHFA
———Intros. — Intros.
HFAAB=A HFAAC=SA
ElimH

H:(AAB)V(AAC)FA
F(AAB)V(AAC)=A

I ntros

5

(x:sort), /\, \/, [These are the symbols for universal quantification (for éatéde x of sortsort),
-> ~ conjunction, disjunction, implication, negation respeglly. More generally con-

nectors of the usual logic are represented by visually aindiSCIl symbol.

Intros Put the premisses of the goal in the hypotheses

ElimH Apply an elimination rule for the given formuld

Assunption Attempts to solve the current goal by telling Coq the goall$® gresent in the
current hypotheses

Qed Ends the proof and saves the generated proof term.

An additional reason that made us choose Coq, was the dsfiyndf a library of definitions and theorems for
real numbers, as DC can be used as well in the domain of irt@gdn the domain of real numbers.

4 Two paths towards an implementation of DC with Coq

The proof system of DC presented in [8] isn't a sequent-dyktem, and thé variable is context-dependent w.r.t.
the ™ connector. Thus the inference rules and axioms of this pypstem might raise incompatibilities with the ones
already present in Coq (see section 4.2). That's why we hefieeti two approaches so as to implement DC’s proof
system in Coq.

Despite those different approaches, in each case gramoefimiéions had been done, in order to ease the proof
process. For example, tieamondmeaning “for some sub-interval” (see 2.4) has been giveAB@ll symbol<>.

Side-conditions involving the analysis of the formulapatad been coded with inductive definitions or functions.

We will focus in the following, on the IL part of the DC implemtations, as DC-specific axioms and inference
rules didn’t bring much problems.

Also notice that problems we’ll speak about have been salvgd], but Isabelle/HOL being a meta-logic, it's thus
easier to build a full logic in it than coping peculiaritielalready existent logic one can base the implementatiotnon.
this point of view, the shallow-embedded Coq implementatibDC in section 4.1 is comparable to the Isabelle/HOL
one.

4.1 Shallow-embedded implementation

In this implementation, we simply added the missing conmmaadf DC with their correct type, and defined the prop-
erties of these connectors through axioms and inferenes,rat described in [8].

The development libraries have been divided by logicaksysind by functionality : there are an IL axioms library,
an IL syntax definition and an IL theorems library, and basedhat, a DC axioms library, a DC syntax definition
library and a DC theorems library. Hence we can say that thémstrembedded implementationnsodular, as one
can develop a DC extension (e.g. [11]) without having to klogvinternals of the DC library.

Example 11.Here are the definitions of the connectors, along with granamd syntax redefinition® is the type of
real numberspr op the type of propositions, and the quotes around the definitipoi nt helps Coq’s parser knowing
that it requires the axioms and definitions of the real numbbrary.

Paraneter |:R

Par anet er chop: Prop- >Prop- >Pr op.

Definition point:="‘1 == RO"".

Definition sometine:=[P:Prop](chop True (chop P True)).
Definition always:=[P:Prop] ~(sonetine ~P).

G ammar constr constr5: =
chop [constr5($cl) "~*" constr5($c2)] -> [(chop $cl $c2)].

Syntax constr level 5 :
chop [$t1 " $t2] ->[[<v 0> $t1:L "~M" $t2:L]].

G ammar constr constr2: =
timepoint ["[[]]"] -> [point]
| sonetine ["<>" constr2($c)] ->
|always ["[]" constr2($c)] -> |

[(sonetinme $c)]
(always $c)].

Syntax constr level 2 :

timepoint [point] ->[[<v 0> "[[]]1"]]

| sonetine [(sometime $t)] -> [[<h 0> "<>" $t:L]]
|always [(always $t)] ->[[<h 0> "[]" $t:L]].

—_——

With these syntax redefinitions, we can write axioms two wysexample:
Axi om chop_assoc: (p, g, r: Prop) (chop (chop p q) r) <-> (chop p (chop q r)).
which is equivalent to:
Axi om chop_assoc: (p,q,r:Prop)((p " q) " r) <> (p ™ (g ™ r)).
As Cogq inference rules are hard-coded in its core, the infaxeules for DC are defined through axioms.

Example 12.For example, the necessitation rule of DC. After having defithe axioms, we also define tactics so the
user has the impression to use an inference rule insteadmpéesaxiom.

Axi om necessitation left:(p,q:Prop)p - ~(~p " q)
Axi om necessitation right:(p,q:Prop)p -> ~(q " ~p).

Tactic Definition NecessitationLeft:=Apply necessitation_|eft.
Tactic Definition NecessitationRight:=Apply necessitation_right.

The specific side-conditions of DC are coded by inductiveniténs:

Example 13.The rigidity side-conditions is (not all the induction casee represented):

I nductive rigid:Prop->Prop: =
| rig_true : (rigid True)
rig_false : (rigid False)

I

| rig.chop : (p,q:Prop) (rigid p)/\(rigid q) -> (rigid (chop p q))
| rigimp : (p,q:Prop) (rigid p)/\(rigid q) -> (rigid (p ->q))

| rig_and : (p,q:Prop) (rigid p)/\(rigid q) -> (rigid (p/\ q))

The cases when a formula is not rigid do not belong to the iticidefinition, so as when trying to prove the
rigidity of a formula, the inference system will be blockd&dhen axioms involving rigidity are written e.g. as follows:

Axiom rigid_chop_left:(p,q:Prop)(rigid p)->(p " q)->p.
Then the theorems are proved the normal way in Coqg.

Example 14.The Coq proof of3(A = B) = (ODA=- OB)

Theorem al ways_di str_inplies: (A B Prop)[](A->B) -> ([]A->[]B).
Unfol d al ways; Unfold sonetine.

Intros ABalwABalwA

Unfold not; Intros somnB.

Apply alw A B.

Monot ony; Intros nB__ True.
Monot ony; Intros nB.
Unfold not; Intros A B.
Apply alw A

Monot ony; Intros nB__ True2.
Monot ony; Intros nB2.
Taut o.

Qed.

Note that the proviso of term freedom for variables (“Thentd) is free for x in@’ in the section 2.5) wasn’t
necessary to define, as this proviso actually preventsabgsbping of newly introduced variables. Indeed Coq is
aware of variables bindings at any level.

Unfortunately, problems that can be easily solved in [9]tdlaave an easy solution here : as we don't define the
whole logical system “from scratch”, we are forced to dedhwthe already present logical connectors and inference
rules.

Let's take for example the problem of equality, describe@imp.21]. Usually one term can be replaced by another
if they are equal. But this is not true for Duration calculigg,example:

Example 15.

{=3/=3=(=2"(=1F3=3=3=2"3=1

This problem is addressed by constraining the equality asitfalways” operator, but this can’t be done for the
shallow-embedded DC in Coq : the equality is already defirtleid (s Leibniz's one), and redefining it would be
contrary to a shallow-embedding approach.

Other similar problems involve the operator and (and, by extension, the duration operator, as one of thevexio
states thail = /).

One way to solve such a problem, is to exploit the ability ofiGo allow one to define “plugins” so to redefine
tactics and inference rules through the language Coq isenrih, but this solution is a difficult one, and makes us
lose the advantages deep-embedding could offer us (imeg aieady present logical connectors and inference rules
without worrying).

4.2 Deep-embedded

In this implementation, all operators involved in the lo@ggen the ones coming from predicate calculus) are redefined
One could compare this approach to the Isabelle/HOL's oheaf@we here use Coq mostly as an inference engine.
The main advantage of this approach is the absence of cdndliateen the implemented proof system and the proof
system of the tool itself.

Example 16.Definition of a formula:

I nductive Formula: Type : =
| FTrue : Formula
| FLetter : Name -> Fornula
| FNot : Fornmula -> Formul a
| FO : Formula -> Fornula -> Fornmul a
| FExists : (DCTerm-> Formula) -> Fornula
| FChop : Formula -> Fornula -> Formula
| FIt : DCTerm-> DCTerm -> Fornul a
| Feq : DCTerm-> DCTerm -> Fornula

Then the validity of a formula, is stated by provingl:val i d formula plval i d is an interpretation function
defined by axioms. One could write an interpretation functising the original semantic of DC, i.e. interval numbers.

Then with the help of syntax redefinition allowed by Coq, oag write the formulas two ways:

Example 17. 1. Axi om pos_interval:%"‘1>=0""*%
2. Axiom pos_interval:(plvalid (Fge length (Rval RO))).

The special functions needed for the checking of some sidelitons are also coded inductively, but with func-
tions this time:

Example 18.In this example, due to the nature of the existencial quaatifin, we do an instanciation so we can
analyse further the formula.

Fi xpoint chop_free [f:Formula]:Prop:=
Cases f of
| FTrue => True
| (FLetter) => True
| (FNot g) => (chop_free g)
| (FO g h) => (chop_free g) /\ (chop_free h)
| (FExists z) => (chop_free (z (Rval R0)))
| (FChop _) => False
| (FIt uv) => True
| (Feq u v) => True
d
Then, when a proof requires to state the rigidity of a formatae simply has to make a simplification to find out
if the formula is rigid or not Tr ue of Fal se after the simplification, respectively).

So, even if the deep embedded approach is still at earlystagealready have positive results for this implemen-
tation:

1. The inductive definitions of formulas gives us an easiéndin of side-conditions

2. The grammar and syntax redefinitions help us to have abbéadgstem

3. The ability to interpret formulas over miscellaneousaoiigms gives us the possibility to prove all the modifica-
tions of the proof system we could make for e.g. the deep-dddxkimplementation

But there are also drawbacks:

1. The system is not easy to extend : there are many flavour€obud there (e.g. [6, 7, 11]), and having a static
definition for the shape of formulas makes a slight modifaatiaving repercussions all over the system, grammar
redefinitions and side-condition functions.

Contrary to the shallow-embedded implementation, extenBiC here requires adding the new connectors in the
inductive definition above, adding axioms and modifyingiptetation functions possibly all over the library,
making this deep-embedded implementation a much less rmodué than the shallow-embedded one.

Note that this remark would also be true for any implemeatatirom scratch” (see [9]).

2. Having to define all axioms and inference rules for welbAkn logical operators from the beginning can be a
source of bugs. Indeed, in a shallow-embedded implementatie can make the decision to trust the definition
of already present connectors. Moreover building such glementation is time-consuming.

5 Perspectives

What made us stop our work, besides other developmentsgimaree of the implementation is:

— The conflicts caused by the temporal logical connettand the special variablewith the inference rules of the
proof system, for the shallow-embedded implementation

— The time-consuming task of defining the whole proof systasmfthe beginning, for the deep-embedded imple-
mentation

In [9], the former is solved by the modification of the axionmelaules causing those conflicts : the equality is
redefined, the DC-specific inference rules are modified te talaccount that the inference system is a sequent-style
one. Moreover, those modifications are not proved with pehpaper, but are proved with an earlier implementation
of DC with PVS [12]. In short, modifications for the implematibn of a proof system in a proof tool are proved with
another proof tool.

This is where the deep-embedded implementation can helgva<an use it to prove modifications of the proof
system that would solve the problems of the shallow-embe:ddplementation.

An interesting track to solve those problems, is to considey more as a variable (because of its peculiar prop-
erties), but rather as predicates over values of the chasereric domain (real numbers usually) with the adequate
axioms.

Example 19.E.g., withinterval_le stating that the current time interval is lower than or eqoabme value, we define
the axioms relating this predicate with “normal” order t&las:
interval_le(x) Ax <y=-interval_le(y)

6 Conclusion

As explained in section 1, this work is an effort to have a ptool for both normal logic and DC at disposal.

We built two implementations, a shallow-embedded and a-@eelpedded one, having in mind different uses for
them : the former would be used as a proof tool allowing onestison on formulas and specifications made with
DC, and the latter would allow one to reason on the DC proofesydtself, e.g. to prove the equivalence of two
interpretations of DC, or find decidability results.

The shallow-embedded implementation has shown us probddneady faced in [9] with solutions that are not
easy to apply with Coq, and the deep-embedded implementatteereas long to define, can help us modify the proof
system so as to solve these problems. So the same proof wssdsboth to implement a proof system and to prove
properties of this proof system.

7 Thanks

I would like to thank Vincent Poirriez for his enlighteningmarks, Georges Mariano, the team of the Coq project for
making such a powerful proof tool.

References

1. Lano, K.: Specifying reactive systems in B AMN. LNQ312(1997) 242-275

2. Treharne, H., Schneider, S.: Capturing timing requirgsdéormally in AMN. Technical Report CSD-TR-99-06, Royal
Holloway, Department of computer science, Egham, SurreT0OEX, England (1999)

3. Hammad, A., Julliand, J., Mountassir, H., Okalas Moss&mi Expression en B et raffinement des systemes réactifgsem
réel. In: AFADL'2003. (2003) 211-225

4. Zhou, C., Hoare, C., Ravn, A.: A calculus of durations.lifiormation Processing Letters. Volume 10(5). (1991) 26%-

5. Dutertre, B.: On first order interval temporal logic. Teial Report CSD-TR-94-3, University of London, Departineh
computer science, Egham, Surrey TW20 OEX, England (1995)

6. Zhou, C., Wang, J., Ravn, A.: A duration calculus with iitéirintervals. In Reichel, H., ed.: Fundamentals of Compuyti
Theory. Volume 965 of LNCS. Springer-Verlag, Libeck, Gengnél995) 16-41

7. Zhou, C., Guelev, D., Naijun, Z.: A higher-order duraticadculus. In: Symposium in Celebration of the Work of C.A.R.
Hoare, Oxford (1999) (Technical report 167, UNU-IIST, BOx 3058, Macau, July 1999).

8. Hansen, M., Zhou, C.: Duration calculus, logical fouiatsd. In: Formal Aspects of Computing. Volume 9. (1997) 2B33>-

9. Heilmann, S.T.: Proof Support for Duration Calculus. fesis, Department of Information Technology, Technidgaiversity
of Denmark (1999)

10

10. : Coq (1989-2003) http://coqg.inria.fr.
11. Guelev, D., Hung, D.: Completeness and decidability fohgment of duration calculus with iteration. In: Asian Quurting

Science Conference (ASIAN'99). Volume 1742 of LNCS., Phukéailand, Springer-Verlag (1999) 139-150 Also presénte

at International Conference on Mathematical Foundatidmfofmatics, Hanoi, October 25-28, 1999.
12. Skakkebaek, J.U.: A Verification Assistant for a Real-dibogic. Phd-thesis, Department of Computer Science, Teghn

University of Denmark (1994) Also available as Technicap& ID-TR: 1994-150.

11

